本文整理汇总了Python中tensorflow.contrib.slim.nets.resnet_utils.resnet_arg_scope方法的典型用法代码示例。如果您正苦于以下问题:Python resnet_utils.resnet_arg_scope方法的具体用法?Python resnet_utils.resnet_arg_scope怎么用?Python resnet_utils.resnet_arg_scope使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.contrib.slim.nets.resnet_utils
的用法示例。
在下文中一共展示了resnet_utils.resnet_arg_scope方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: testEndPointsV2
# 需要导入模块: from tensorflow.contrib.slim.nets import resnet_utils [as 别名]
# 或者: from tensorflow.contrib.slim.nets.resnet_utils import resnet_arg_scope [as 别名]
def testEndPointsV2(self):
"""Test the end points of a tiny v2 bottleneck network."""
bottleneck = resnet_v2.bottleneck
blocks = [resnet_utils.Block('block1', bottleneck, [(4, 1, 1), (4, 1, 2)]),
resnet_utils.Block('block2', bottleneck, [(8, 2, 1), (8, 2, 1)])]
inputs = create_test_input(2, 32, 16, 3)
with slim.arg_scope(resnet_utils.resnet_arg_scope()):
_, end_points = self._resnet_plain(inputs, blocks, scope='tiny')
expected = [
'tiny/block1/unit_1/bottleneck_v2/shortcut',
'tiny/block1/unit_1/bottleneck_v2/conv1',
'tiny/block1/unit_1/bottleneck_v2/conv2',
'tiny/block1/unit_1/bottleneck_v2/conv3',
'tiny/block1/unit_2/bottleneck_v2/conv1',
'tiny/block1/unit_2/bottleneck_v2/conv2',
'tiny/block1/unit_2/bottleneck_v2/conv3',
'tiny/block2/unit_1/bottleneck_v2/shortcut',
'tiny/block2/unit_1/bottleneck_v2/conv1',
'tiny/block2/unit_1/bottleneck_v2/conv2',
'tiny/block2/unit_1/bottleneck_v2/conv3',
'tiny/block2/unit_2/bottleneck_v2/conv1',
'tiny/block2/unit_2/bottleneck_v2/conv2',
'tiny/block2/unit_2/bottleneck_v2/conv3']
self.assertItemsEqual(expected, end_points)
示例2: testAtrousFullyConvolutionalEndpointShapes
# 需要导入模块: from tensorflow.contrib.slim.nets import resnet_utils [as 别名]
# 或者: from tensorflow.contrib.slim.nets.resnet_utils import resnet_arg_scope [as 别名]
def testAtrousFullyConvolutionalEndpointShapes(self):
global_pool = False
num_classes = 10
output_stride = 8
inputs = create_test_input(2, 321, 321, 3)
with slim.arg_scope(resnet_utils.resnet_arg_scope()):
_, end_points = self._resnet_small(inputs,
num_classes,
global_pool,
output_stride=output_stride,
scope='resnet')
endpoint_to_shape = {
'resnet/block1': [2, 41, 41, 4],
'resnet/block2': [2, 41, 41, 8],
'resnet/block3': [2, 41, 41, 16],
'resnet/block4': [2, 41, 41, 32]}
for endpoint in endpoint_to_shape:
shape = endpoint_to_shape[endpoint]
self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape)
示例3: testAtrousFullyConvolutionalValues
# 需要导入模块: from tensorflow.contrib.slim.nets import resnet_utils [as 别名]
# 或者: from tensorflow.contrib.slim.nets.resnet_utils import resnet_arg_scope [as 别名]
def testAtrousFullyConvolutionalValues(self):
"""Verify dense feature extraction with atrous convolution."""
nominal_stride = 32
for output_stride in [4, 8, 16, 32, None]:
with slim.arg_scope(resnet_utils.resnet_arg_scope(is_training=False)):
with tf.Graph().as_default():
with self.test_session() as sess:
tf.set_random_seed(0)
inputs = create_test_input(2, 81, 81, 3)
# Dense feature extraction followed by subsampling.
output, _ = self._resnet_small(inputs, None, global_pool=False,
output_stride=output_stride)
if output_stride is None:
factor = 1
else:
factor = nominal_stride // output_stride
output = resnet_utils.subsample(output, factor)
# Make the two networks use the same weights.
tf.get_variable_scope().reuse_variables()
# Feature extraction at the nominal network rate.
expected, _ = self._resnet_small(inputs, None, global_pool=False)
sess.run(tf.global_variables_initializer())
self.assertAllClose(output.eval(), expected.eval(),
atol=1e-4, rtol=1e-4)
示例4: testUnknownBatchSize
# 需要导入模块: from tensorflow.contrib.slim.nets import resnet_utils [as 别名]
# 或者: from tensorflow.contrib.slim.nets.resnet_utils import resnet_arg_scope [as 别名]
def testUnknownBatchSize(self):
batch = 2
height, width = 65, 65
global_pool = True
num_classes = 10
inputs = create_test_input(None, height, width, 3)
with slim.arg_scope(resnet_utils.resnet_arg_scope()):
logits, _ = self._resnet_small(inputs, num_classes, global_pool,
scope='resnet')
self.assertTrue(logits.op.name.startswith('resnet/logits'))
self.assertListEqual(logits.get_shape().as_list(),
[None, 1, 1, num_classes])
images = create_test_input(batch, height, width, 3)
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
output = sess.run(logits, {inputs: images.eval()})
self.assertEqual(output.shape, (batch, 1, 1, num_classes))
示例5: testAtrousFullyConvolutionalUnknownHeightWidth
# 需要导入模块: from tensorflow.contrib.slim.nets import resnet_utils [as 别名]
# 或者: from tensorflow.contrib.slim.nets.resnet_utils import resnet_arg_scope [as 别名]
def testAtrousFullyConvolutionalUnknownHeightWidth(self):
batch = 2
height, width = 65, 65
global_pool = False
output_stride = 8
inputs = create_test_input(batch, None, None, 3)
with slim.arg_scope(resnet_utils.resnet_arg_scope()):
output, _ = self._resnet_small(inputs,
None,
global_pool,
output_stride=output_stride)
self.assertListEqual(output.get_shape().as_list(),
[batch, None, None, 32])
images = create_test_input(batch, height, width, 3)
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
output = sess.run(output, {inputs: images.eval()})
self.assertEqual(output.shape, (batch, 9, 9, 32))
示例6: testRootlessFullyConvolutionalEndpointShapes
# 需要导入模块: from tensorflow.contrib.slim.nets import resnet_utils [as 别名]
# 或者: from tensorflow.contrib.slim.nets.resnet_utils import resnet_arg_scope [as 别名]
def testRootlessFullyConvolutionalEndpointShapes(self):
global_pool = False
num_classes = 10
inputs = create_test_input(2, 128, 128, 3)
with slim.arg_scope(resnet_utils.resnet_arg_scope()):
_, end_points = self._resnet_small(inputs, num_classes, global_pool,
include_root_block=False,
scope='resnet')
endpoint_to_shape = {
'resnet/block1': [2, 64, 64, 4],
'resnet/block2': [2, 32, 32, 8],
'resnet/block3': [2, 16, 16, 16],
'resnet/block4': [2, 16, 16, 32]}
for endpoint in endpoint_to_shape:
shape = endpoint_to_shape[endpoint]
self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape)
示例7: testClassificationEndPointsWithMultigrid
# 需要导入模块: from tensorflow.contrib.slim.nets import resnet_utils [as 别名]
# 或者: from tensorflow.contrib.slim.nets.resnet_utils import resnet_arg_scope [as 别名]
def testClassificationEndPointsWithMultigrid(self):
global_pool = True
num_classes = 10
inputs = create_test_input(2, 224, 224, 3)
multi_grid = [1, 2, 4]
with slim.arg_scope(resnet_utils.resnet_arg_scope()):
logits, end_points = self._resnet_small(inputs,
num_classes,
global_pool=global_pool,
multi_grid=multi_grid,
scope='resnet')
self.assertTrue(logits.op.name.startswith('resnet/logits'))
self.assertListEqual(logits.get_shape().as_list(), [2, 1, 1, num_classes])
self.assertTrue('predictions' in end_points)
self.assertListEqual(end_points['predictions'].get_shape().as_list(),
[2, 1, 1, num_classes])
示例8: testClassificationShapes
# 需要导入模块: from tensorflow.contrib.slim.nets import resnet_utils [as 别名]
# 或者: from tensorflow.contrib.slim.nets.resnet_utils import resnet_arg_scope [as 别名]
def testClassificationShapes(self):
global_pool = True
num_classes = 10
inputs = create_test_input(2, 224, 224, 3)
with slim.arg_scope(resnet_utils.resnet_arg_scope()):
_, end_points = self._resnet_small(inputs,
num_classes,
global_pool=global_pool,
scope='resnet')
endpoint_to_shape = {
'resnet/conv1_1': [2, 112, 112, 64],
'resnet/conv1_2': [2, 112, 112, 64],
'resnet/conv1_3': [2, 112, 112, 128],
'resnet/block1': [2, 28, 28, 4],
'resnet/block2': [2, 14, 14, 8],
'resnet/block3': [2, 7, 7, 16],
'resnet/block4': [2, 7, 7, 32]}
for endpoint, shape in endpoint_to_shape.iteritems():
self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape)
示例9: testFullyConvolutionalEndpointShapes
# 需要导入模块: from tensorflow.contrib.slim.nets import resnet_utils [as 别名]
# 或者: from tensorflow.contrib.slim.nets.resnet_utils import resnet_arg_scope [as 别名]
def testFullyConvolutionalEndpointShapes(self):
global_pool = False
num_classes = 10
inputs = create_test_input(2, 321, 321, 3)
with slim.arg_scope(resnet_utils.resnet_arg_scope()):
_, end_points = self._resnet_small(inputs,
num_classes,
global_pool=global_pool,
scope='resnet')
endpoint_to_shape = {
'resnet/conv1_1': [2, 161, 161, 64],
'resnet/conv1_2': [2, 161, 161, 64],
'resnet/conv1_3': [2, 161, 161, 128],
'resnet/block1': [2, 41, 41, 4],
'resnet/block2': [2, 21, 21, 8],
'resnet/block3': [2, 11, 11, 16],
'resnet/block4': [2, 11, 11, 32]}
for endpoint, shape in endpoint_to_shape.iteritems():
self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape)
示例10: testAtrousFullyConvolutionalEndpointShapes
# 需要导入模块: from tensorflow.contrib.slim.nets import resnet_utils [as 别名]
# 或者: from tensorflow.contrib.slim.nets.resnet_utils import resnet_arg_scope [as 别名]
def testAtrousFullyConvolutionalEndpointShapes(self):
global_pool = False
num_classes = 10
output_stride = 8
inputs = create_test_input(2, 321, 321, 3)
with slim.arg_scope(resnet_utils.resnet_arg_scope()):
_, end_points = self._resnet_small(inputs,
num_classes,
global_pool=global_pool,
output_stride=output_stride,
scope='resnet')
endpoint_to_shape = {
'resnet/conv1_1': [2, 161, 161, 64],
'resnet/conv1_2': [2, 161, 161, 64],
'resnet/conv1_3': [2, 161, 161, 128],
'resnet/block1': [2, 41, 41, 4],
'resnet/block2': [2, 41, 41, 8],
'resnet/block3': [2, 41, 41, 16],
'resnet/block4': [2, 41, 41, 32]}
for endpoint, shape in endpoint_to_shape.iteritems():
self.assertListEqual(end_points[endpoint].get_shape().as_list(), shape)
示例11: testUnknownBatchSize
# 需要导入模块: from tensorflow.contrib.slim.nets import resnet_utils [as 别名]
# 或者: from tensorflow.contrib.slim.nets.resnet_utils import resnet_arg_scope [as 别名]
def testUnknownBatchSize(self):
batch = 2
height, width = 65, 65
global_pool = True
num_classes = 10
inputs = create_test_input(None, height, width, 3)
with slim.arg_scope(resnet_utils.resnet_arg_scope()):
logits, _ = self._resnet_small(inputs,
num_classes,
global_pool=global_pool,
scope='resnet')
self.assertTrue(logits.op.name.startswith('resnet/logits'))
self.assertListEqual(logits.get_shape().as_list(),
[None, 1, 1, num_classes])
images = create_test_input(batch, height, width, 3)
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
output = sess.run(logits, {inputs: images.eval()})
self.assertEquals(output.shape, (batch, 1, 1, num_classes))
示例12: testFullyConvolutionalUnknownHeightWidth
# 需要导入模块: from tensorflow.contrib.slim.nets import resnet_utils [as 别名]
# 或者: from tensorflow.contrib.slim.nets.resnet_utils import resnet_arg_scope [as 别名]
def testFullyConvolutionalUnknownHeightWidth(self):
batch = 2
height, width = 65, 65
global_pool = False
inputs = create_test_input(batch, None, None, 3)
with slim.arg_scope(resnet_utils.resnet_arg_scope()):
output, _ = self._resnet_small(inputs,
None,
global_pool=global_pool)
self.assertListEqual(output.get_shape().as_list(),
[batch, None, None, 32])
images = create_test_input(batch, height, width, 3)
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
output = sess.run(output, {inputs: images.eval()})
self.assertEquals(output.shape, (batch, 3, 3, 32))
示例13: testAtrousFullyConvolutionalUnknownHeightWidth
# 需要导入模块: from tensorflow.contrib.slim.nets import resnet_utils [as 别名]
# 或者: from tensorflow.contrib.slim.nets.resnet_utils import resnet_arg_scope [as 别名]
def testAtrousFullyConvolutionalUnknownHeightWidth(self):
batch = 2
height, width = 65, 65
global_pool = False
output_stride = 8
inputs = create_test_input(batch, None, None, 3)
with slim.arg_scope(resnet_utils.resnet_arg_scope()):
output, _ = self._resnet_small(inputs,
None,
global_pool=global_pool,
output_stride=output_stride)
self.assertListEqual(output.get_shape().as_list(),
[batch, None, None, 32])
images = create_test_input(batch, height, width, 3)
with self.test_session() as sess:
sess.run(tf.global_variables_initializer())
output = sess.run(output, {inputs: images.eval()})
self.assertEquals(output.shape, (batch, 9, 9, 32))
示例14: testClassificationEndPointsWithLiteBottleneck
# 需要导入模块: from tensorflow.contrib.slim.nets import resnet_utils [as 别名]
# 或者: from tensorflow.contrib.slim.nets.resnet_utils import resnet_arg_scope [as 别名]
def testClassificationEndPointsWithLiteBottleneck(self):
global_pool = True
num_classes = 10
inputs = create_test_input(2, 224, 224, 3)
with slim.arg_scope(resnet_utils.resnet_arg_scope()):
logits, end_points = self._resnet_small_lite_bottleneck(
inputs,
num_classes,
global_pool=global_pool,
scope='resnet')
self.assertTrue(logits.op.name.startswith('resnet/logits'))
self.assertListEqual(logits.get_shape().as_list(), [2, 1, 1, num_classes])
self.assertIn('predictions', end_points)
self.assertListEqual(end_points['predictions'].get_shape().as_list(),
[2, 1, 1, num_classes])
示例15: testClassificationEndPointsWithMultigridAndLiteBottleneck
# 需要导入模块: from tensorflow.contrib.slim.nets import resnet_utils [as 别名]
# 或者: from tensorflow.contrib.slim.nets.resnet_utils import resnet_arg_scope [as 别名]
def testClassificationEndPointsWithMultigridAndLiteBottleneck(self):
global_pool = True
num_classes = 10
inputs = create_test_input(2, 224, 224, 3)
multi_grid = [1, 2]
with slim.arg_scope(resnet_utils.resnet_arg_scope()):
logits, end_points = self._resnet_small_lite_bottleneck(
inputs,
num_classes,
global_pool=global_pool,
multi_grid=multi_grid,
scope='resnet')
self.assertTrue(logits.op.name.startswith('resnet/logits'))
self.assertListEqual(logits.get_shape().as_list(), [2, 1, 1, num_classes])
self.assertIn('predictions', end_points)
self.assertListEqual(end_points['predictions'].get_shape().as_list(),
[2, 1, 1, num_classes])