本文整理汇总了Python中tensorflow.contrib.slim.nets.inception.inception_v3_base方法的典型用法代码示例。如果您正苦于以下问题:Python inception.inception_v3_base方法的具体用法?Python inception.inception_v3_base怎么用?Python inception.inception_v3_base使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.contrib.slim.nets.inception
的用法示例。
在下文中一共展示了inception.inception_v3_base方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: conv_tower_fn
# 需要导入模块: from tensorflow.contrib.slim.nets import inception [as 别名]
# 或者: from tensorflow.contrib.slim.nets.inception import inception_v3_base [as 别名]
def conv_tower_fn(self, images, is_training=True, reuse=None):
"""Computes convolutional features using the InceptionV3 model.
Args:
images: A tensor of shape [batch_size, height, width, channels].
is_training: whether is training or not.
reuse: whether or not the network and its variables should be reused. To
be able to reuse 'scope' must be given.
Returns:
A tensor of shape [batch_size, OH, OW, N], where OWxOH is resolution of
output feature map and N is number of output features (depends on the
network architecture).
"""
mparams = self._mparams['conv_tower_fn']
logging.debug('Using final_endpoint=%s', mparams.final_endpoint)
with tf.variable_scope('conv_tower_fn/INCE'):
if reuse:
tf.get_variable_scope().reuse_variables()
with slim.arg_scope(inception.inception_v3_arg_scope()):
net, _ = inception.inception_v3_base(
images, final_endpoint=mparams.final_endpoint)
return net
示例2: conv_tower_fn
# 需要导入模块: from tensorflow.contrib.slim.nets import inception [as 别名]
# 或者: from tensorflow.contrib.slim.nets.inception import inception_v3_base [as 别名]
def conv_tower_fn(self, images, is_training=True, reuse=None):
"""Computes convolutional features using the InceptionV3 model.
Args:
images: A tensor of shape [batch_size, height, width, channels].
is_training: whether is training or not.
reuse: whether or not the network and its variables should be reused. To
be able to reuse 'scope' must be given.
Returns:
A tensor of shape [batch_size, OH, OW, N], where OWxOH is resolution of
output feature map and N is number of output features (depends on the
network architecture).
"""
mparams = self._mparams['conv_tower_fn']
logging.debug('Using final_endpoint=%s', mparams.final_endpoint)
with tf.variable_scope('conv_tower_fn/INCE'):
if reuse:
tf.get_variable_scope().reuse_variables()
with slim.arg_scope(inception.inception_v3_arg_scope()):
with slim.arg_scope([slim.batch_norm, slim.dropout],
is_training=is_training):
net, _ = inception.inception_v3_base(
images, final_endpoint=mparams.final_endpoint)
return net
示例3: testBuildBaseNetwork
# 需要导入模块: from tensorflow.contrib.slim.nets import inception [as 别名]
# 或者: from tensorflow.contrib.slim.nets.inception import inception_v3_base [as 别名]
def testBuildBaseNetwork(self):
batch_size = 5
height, width = 299, 299
inputs = tf.random_uniform((batch_size, height, width, 3))
final_endpoint, end_points = inception.inception_v3_base(inputs)
self.assertTrue(final_endpoint.op.name.startswith(
'InceptionV3/Mixed_7c'))
self.assertListEqual(final_endpoint.get_shape().as_list(),
[batch_size, 8, 8, 2048])
expected_endpoints = ['Conv2d_1a_3x3', 'Conv2d_2a_3x3', 'Conv2d_2b_3x3',
'MaxPool_3a_3x3', 'Conv2d_3b_1x1', 'Conv2d_4a_3x3',
'MaxPool_5a_3x3', 'Mixed_5b', 'Mixed_5c', 'Mixed_5d',
'Mixed_6a', 'Mixed_6b', 'Mixed_6c', 'Mixed_6d',
'Mixed_6e', 'Mixed_7a', 'Mixed_7b', 'Mixed_7c']
self.assertItemsEqual(end_points.keys(), expected_endpoints)
示例4: testBuildOnlyUptoFinalEndpoint
# 需要导入模块: from tensorflow.contrib.slim.nets import inception [as 别名]
# 或者: from tensorflow.contrib.slim.nets.inception import inception_v3_base [as 别名]
def testBuildOnlyUptoFinalEndpoint(self):
batch_size = 5
height, width = 299, 299
endpoints = ['Conv2d_1a_3x3', 'Conv2d_2a_3x3', 'Conv2d_2b_3x3',
'MaxPool_3a_3x3', 'Conv2d_3b_1x1', 'Conv2d_4a_3x3',
'MaxPool_5a_3x3', 'Mixed_5b', 'Mixed_5c', 'Mixed_5d',
'Mixed_6a', 'Mixed_6b', 'Mixed_6c', 'Mixed_6d',
'Mixed_6e', 'Mixed_7a', 'Mixed_7b', 'Mixed_7c']
for index, endpoint in enumerate(endpoints):
with tf.Graph().as_default():
inputs = tf.random_uniform((batch_size, height, width, 3))
out_tensor, end_points = inception.inception_v3_base(
inputs, final_endpoint=endpoint)
self.assertTrue(out_tensor.op.name.startswith(
'InceptionV3/' + endpoint))
self.assertItemsEqual(endpoints[:index+1], end_points)
示例5: conv_tower_fn
# 需要导入模块: from tensorflow.contrib.slim.nets import inception [as 别名]
# 或者: from tensorflow.contrib.slim.nets.inception import inception_v3_base [as 别名]
def conv_tower_fn(self, images, is_training=True, reuse=None):
"""Computes convolutional features using the InceptionV3 model.
Args:
images: A tensor of shape [batch_size, height, width, channels].
is_training: whether is training or not.
reuse: whether or not the network and its variables should be reused. To
be able to reuse 'scope' must be given.
Returns:
A tensor of shape [batch_size, OH, OW, N], where OWxOH is resolution of
output feature map and N is number of output features (depends on the
network architecture).
"""
mparams = self._mparams['conv_tower_fn']
logging.debug('Using final_endpoint=%s', mparams.final_endpoint)
with tf.variable_scope('conv_tower_fn/INCE'):
if reuse:
tf.get_variable_scope().reuse_variables()
with slim.arg_scope(
[slim.batch_norm, slim.dropout], is_training=is_training):
with slim.arg_scope(inception.inception_v3_arg_scope()):
net, _ = inception.inception_v3_base(
images, final_endpoint=mparams.final_endpoint)
return net
示例6: testBuildAndCheckAllEndPointsUptoMixed7c
# 需要导入模块: from tensorflow.contrib.slim.nets import inception [as 别名]
# 或者: from tensorflow.contrib.slim.nets.inception import inception_v3_base [as 别名]
def testBuildAndCheckAllEndPointsUptoMixed7c(self):
batch_size = 5
height, width = 299, 299
inputs = tf.random_uniform((batch_size, height, width, 3))
_, end_points = inception.inception_v3_base(
inputs, final_endpoint='Mixed_7c')
endpoints_shapes = {'Conv2d_1a_3x3': [batch_size, 149, 149, 32],
'Conv2d_2a_3x3': [batch_size, 147, 147, 32],
'Conv2d_2b_3x3': [batch_size, 147, 147, 64],
'MaxPool_3a_3x3': [batch_size, 73, 73, 64],
'Conv2d_3b_1x1': [batch_size, 73, 73, 80],
'Conv2d_4a_3x3': [batch_size, 71, 71, 192],
'MaxPool_5a_3x3': [batch_size, 35, 35, 192],
'Mixed_5b': [batch_size, 35, 35, 256],
'Mixed_5c': [batch_size, 35, 35, 288],
'Mixed_5d': [batch_size, 35, 35, 288],
'Mixed_6a': [batch_size, 17, 17, 768],
'Mixed_6b': [batch_size, 17, 17, 768],
'Mixed_6c': [batch_size, 17, 17, 768],
'Mixed_6d': [batch_size, 17, 17, 768],
'Mixed_6e': [batch_size, 17, 17, 768],
'Mixed_7a': [batch_size, 8, 8, 1280],
'Mixed_7b': [batch_size, 8, 8, 2048],
'Mixed_7c': [batch_size, 8, 8, 2048]}
self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
for endpoint_name in endpoints_shapes:
expected_shape = endpoints_shapes[endpoint_name]
self.assertTrue(endpoint_name in end_points)
self.assertListEqual(end_points[endpoint_name].get_shape().as_list(),
expected_shape)
示例7: testModelHasExpectedNumberOfParameters
# 需要导入模块: from tensorflow.contrib.slim.nets import inception [as 别名]
# 或者: from tensorflow.contrib.slim.nets.inception import inception_v3_base [as 别名]
def testModelHasExpectedNumberOfParameters(self):
batch_size = 5
height, width = 299, 299
inputs = tf.random_uniform((batch_size, height, width, 3))
with slim.arg_scope(inception.inception_v3_arg_scope()):
inception.inception_v3_base(inputs)
total_params, _ = slim.model_analyzer.analyze_vars(
slim.get_model_variables())
self.assertAlmostEqual(21802784, total_params)