当前位置: 首页>>代码示例>>Python>>正文


Python slim.layer_norm方法代码示例

本文整理汇总了Python中tensorflow.contrib.slim.layer_norm方法的典型用法代码示例。如果您正苦于以下问题:Python slim.layer_norm方法的具体用法?Python slim.layer_norm怎么用?Python slim.layer_norm使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.contrib.slim的用法示例。


在下文中一共展示了slim.layer_norm方法的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: argscope

# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import layer_norm [as 别名]
def argscope(is_training=None, normalizer_fn=slim.layer_norm):
  """Default TF argscope used for convnet-based grasping models.

  Args:
    is_training: Whether this argscope is for training or inference.
    normalizer_fn: Which conv/fc normalizer to use.
  Returns:
    Dictionary of argument overrides.
  """
  with slim.arg_scope([slim.batch_norm, slim.dropout], is_training=is_training):
    with slim.arg_scope(
        [slim.conv2d, slim.fully_connected],
        weights_initializer=tf.truncated_normal_initializer(stddev=0.01),
        activation_fn=tf.nn.relu,
        normalizer_fn=normalizer_fn):
      with slim.arg_scope(
          [slim.conv2d, slim.max_pool2d], stride=2, padding='VALID') as scope:
        return scope 
开发者ID:google-research,项目名称:tensor2robot,代码行数:20,代码来源:tf_modules.py

示例2: __call__

# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import layer_norm [as 别名]
def __call__(self, inputs, state, scope=None):
        if self._apply_to == 'input':
            with tf.variable_scope(scope or self._name):
                inputs = slim.layer_norm(inputs)
            return self._cell(inputs, state)
        elif self._apply_to == 'output':
            output, res_state = self._cell(inputs, state)
            with tf.variable_scope(scope or self._name):
                output = slim.layer_norm(output)
                return output, res_state
        elif self._apply_to == 'state':
            output, res_state = self._cell(inputs, state)
            with tf.variable_scope(scope or self._name):
                res_state = slim.layer_norm(res_state)
                return output, res_state
        else:
            raise ValueError('Unknown apply_to: "{}"'.format(self._apply_to)) 
开发者ID:sjoerdvansteenkiste,项目名称:Neural-EM,代码行数:19,代码来源:network.py

示例3: __call__

# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import layer_norm [as 别名]
def __call__(self, inputs, state, scope=None):
        if self._apply_to == 'input':
            with tf.variable_scope(scope or self._name):
                inputs = slim.layer_norm(inputs)
            return self._cell(inputs, state)
        elif self._apply_to == 'output':
            output, res_state = self._cell(inputs, state)
            with tf.variable_scope(scope or self._name):
                output = slim.layer_norm(output)
                return output, res_state
        elif self._apply_to == 'state':
            output, res_state = self._cell(inputs, state)
            with tf.variable_scope(scope or self._name):
                res_state = slim.layer_norm(res_state)
                return output, res_state
        else:
            raise ValueError('Unknown apply_to: "{}"'.format(self._apply_to))
            

# R-NEM CELL 
开发者ID:sjoerdvansteenkiste,项目名称:Relational-NEM,代码行数:22,代码来源:network.py

示例4: _build_layer

# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import layer_norm [as 别名]
def _build_layer(inputs, layer):
        # apply transformation
        if layer['name'] == 'fc':
            out = slim.fully_connected(inputs, layer['size'], activation_fn=None)
        else:
            raise KeyError('Unknown layer "{}"'.format(layer['name']))

        # apply layer normalisation
        if layer.get('ln', False):
            out = slim.layer_norm(out)

        # apply activation function
        if layer.get('act', False):
            out = ACTIVATION_FUNCTIONS[layer['act']](out)

        return out


# NETWORK BUILDER 
开发者ID:sjoerdvansteenkiste,项目名称:Relational-NEM,代码行数:21,代码来源:network.py

示例5: create_network_factory

# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import layer_norm [as 别名]
def create_network_factory(is_training, num_classes, add_logits,
                           weight_decay=1e-8, reuse=None):

    def factory_fn(image):
            with slim.arg_scope([slim.batch_norm, slim.dropout],
                                is_training=is_training):
                with slim.arg_scope([slim.conv2d, slim.fully_connected,
                                     slim.batch_norm, slim.layer_norm],
                                    reuse=reuse):
                    features, logits = create_network(
                        image, num_classes=num_classes, add_logits=add_logits,
                        reuse=reuse, create_summaries=is_training,
                        weight_decay=weight_decay)
                    return features, logits

    return factory_fn 
开发者ID:nwojke,项目名称:cosine_metric_learning,代码行数:18,代码来源:network_definition.py

示例6: _network_factory

# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import layer_norm [as 别名]
def _network_factory(weight_decay=1e-8):

    def factory_fn(image, reuse):
            with slim.arg_scope([slim.batch_norm, slim.dropout],
                                is_training=False):
                with slim.arg_scope([slim.conv2d, slim.fully_connected,
                                     slim.batch_norm, slim.layer_norm],
                                    reuse=reuse):
                    features, logits = _create_network(
                        image, reuse=reuse, weight_decay=weight_decay)
                    return features, logits

    return factory_fn 
开发者ID:nwojke,项目名称:deep_sort,代码行数:15,代码来源:freeze_model.py

示例7: _call

# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import layer_norm [as 别名]
def _call(self, inputs, output_size, is_training):
        inputs = self._subcall(inputs, output_size, is_training)
        if self._spec.get('ln', False):
            inputs = slim.layer_norm(inputs)

        act = self._spec.get('act', False)
        if act:
            activation = ACTIVATION_FUNCTIONS[act]
            return activation(inputs)

        return inputs 
开发者ID:e2crawfo,项目名称:auto_yolo,代码行数:13,代码来源:nem.py

示例8: resnet_arg_scope

# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import layer_norm [as 别名]
def resnet_arg_scope(weight_decay=0.0001,
                     activation_fn=tf.nn.relu,
                     use_layer_norm=True):
  """Defines the default ResNet arg scope.

  TODO(gpapan): The batch-normalization related default values above are
    appropriate for use in conjunction with the reference ResNet models
    released at https://github.com/KaimingHe/deep-residual-networks. When
    training ResNets from scratch, they might need to be tuned.

  Args:
    weight_decay: The weight decay to use for regularizing the model.
    activation_fn: The activation function which is used in ResNet.
    use_layer_norm: Whether or not to use layer normalization.

  Returns:
    An `arg_scope` to use for the resnet models.
  """

  with slim.arg_scope(
      [slim.conv2d],
      weights_regularizer=slim.l2_regularizer(weight_decay),
      weights_initializer=slim.variance_scaling_initializer(),
      activation_fn=activation_fn,
      normalizer_fn=slim.layer_norm if use_layer_norm else None,
      normalizer_params=None):
    # The following implies padding='SAME' for pool1, which makes feature
    # alignment easier for dense prediction tasks. This is also used in
    # https://github.com/facebook/fb.resnet.torch. However the accompanying
    # code of 'Deep Residual Learning for Image Recognition' uses
    # padding='VALID' for pool1. You can switch to that choice by setting
    # slim.arg_scope([slim.max_pool2d], padding='VALID').
    with slim.arg_scope([slim.max_pool2d], padding='SAME') as arg_sc:
      return arg_sc 
开发者ID:jerryli27,项目名称:TwinGAN,代码行数:36,代码来源:resnet_v2_layernorm.py

示例9: get_norm_layer

# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import layer_norm [as 别名]
def get_norm_layer(norm, training, updates_collections=None):
    if norm == 'none':
        return lambda x: x
    elif norm == 'batch_norm':
        return functools.partial(slim.batch_norm, scale=True, is_training=training, updates_collections=updates_collections)
    elif norm == 'instance_norm':
        return slim.instance_norm
    elif norm == 'layer_norm':
        return slim.layer_norm 
开发者ID:LynnHo,项目名称:AttGAN-Tensorflow,代码行数:11,代码来源:utils.py

示例10: bottleneck

# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import layer_norm [as 别名]
def bottleneck(inputs, depth, depth_bottleneck, stride, rate=1,
               outputs_collections=None, scope=None):
  """Bottleneck residual unit variant with BN before convolutions.

  This is the full preactivation residual unit variant proposed in [2]. See
  Fig. 1(b) of [2] for its definition. Note that we use here the bottleneck
  variant which has an extra bottleneck layer.

  When putting together two consecutive ResNet blocks that use this unit, one
  should use stride = 2 in the last unit of the first block.

  Args:
    inputs: A tensor of size [batch, height, width, channels].
    depth: The depth of the ResNet unit output.
    depth_bottleneck: The depth of the bottleneck layers.
    stride: The ResNet unit's stride. Determines the amount of downsampling of
      the units output compared to its input.
    rate: An integer, rate for atrous convolution.
    outputs_collections: Collection to add the ResNet unit output.
    scope: Optional variable_scope.

  Returns:
    The ResNet unit's output.
  """
  with tf.variable_scope(scope, 'bottleneck_v2', [inputs]) as sc:
    depth_in = slim.utils.last_dimension(inputs.get_shape(), min_rank=4)
    preact = slim.layer_norm(inputs, activation_fn=tf.nn.relu, scope='preact')
    if depth == depth_in:
      shortcut = resnet_utils.subsample(inputs, stride, 'shortcut')
    else:
      shortcut = slim.conv2d(preact, depth, [1, 1], stride=stride,
                             normalizer_fn=None, activation_fn=None,
                             scope='shortcut')

    residual = slim.conv2d(preact, depth_bottleneck, [1, 1], stride=1,
                           scope='conv1')
    residual = resnet_utils.conv2d_same(residual, depth_bottleneck, 3, stride,
                                        rate=rate, scope='conv2')
    residual = slim.conv2d(residual, depth, [1, 1], stride=1,
                           normalizer_fn=None, activation_fn=None,
                           scope='conv3')

    output = shortcut + residual

    return slim.utils.collect_named_outputs(outputs_collections,
                                            sc.name,
                                            output) 
开发者ID:jerryli27,项目名称:TwinGAN,代码行数:49,代码来源:resnet_v2_layernorm.py

示例11: mpi_net

# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import layer_norm [as 别名]
def mpi_net(inputs, num_outputs, ngf=64, vscope='net', reuse_weights=False):
  """Network definition for multiplane image (MPI) inference.

  Args:
    inputs: stack of input images [batch, height, width, input_channels]
    num_outputs: number of output channels
    ngf: number of features for the first conv layer
    vscope: variable scope
    reuse_weights: whether to reuse weights (for weight sharing)
  Returns:
    pred: network output at the same spatial resolution as the inputs.
  """
  with tf.variable_scope(vscope, reuse=reuse_weights):
    with slim.arg_scope(
        [slim.conv2d, slim.conv2d_transpose], normalizer_fn=slim.layer_norm):
      cnv1_1 = slim.conv2d(inputs, ngf, [3, 3], scope='conv1_1', stride=1)
      cnv1_2 = slim.conv2d(cnv1_1, ngf * 2, [3, 3], scope='conv1_2', stride=2)

      cnv2_1 = slim.conv2d(cnv1_2, ngf * 2, [3, 3], scope='conv2_1', stride=1)
      cnv2_2 = slim.conv2d(cnv2_1, ngf * 4, [3, 3], scope='conv2_2', stride=2)

      cnv3_1 = slim.conv2d(cnv2_2, ngf * 4, [3, 3], scope='conv3_1', stride=1)
      cnv3_2 = slim.conv2d(cnv3_1, ngf * 4, [3, 3], scope='conv3_2', stride=1)
      cnv3_3 = slim.conv2d(cnv3_2, ngf * 8, [3, 3], scope='conv3_3', stride=2)

      cnv4_1 = slim.conv2d(
          cnv3_3, ngf * 8, [3, 3], scope='conv4_1', stride=1, rate=2)
      cnv4_2 = slim.conv2d(
          cnv4_1, ngf * 8, [3, 3], scope='conv4_2', stride=1, rate=2)
      cnv4_3 = slim.conv2d(
          cnv4_2, ngf * 8, [3, 3], scope='conv4_3', stride=1, rate=2)

      # Adding skips
      skip = tf.concat([cnv4_3, cnv3_3], axis=3)
      cnv6_1 = slim.conv2d_transpose(
          skip, ngf * 4, [4, 4], scope='conv6_1', stride=2)
      cnv6_2 = slim.conv2d(cnv6_1, ngf * 4, [3, 3], scope='conv6_2', stride=1)
      cnv6_3 = slim.conv2d(cnv6_2, ngf * 4, [3, 3], scope='conv6_3', stride=1)

      skip = tf.concat([cnv6_3, cnv2_2], axis=3)
      cnv7_1 = slim.conv2d_transpose(
          skip, ngf * 2, [4, 4], scope='conv7_1', stride=2)
      cnv7_2 = slim.conv2d(cnv7_1, ngf * 2, [3, 3], scope='conv7_2', stride=1)

      skip = tf.concat([cnv7_2, cnv1_2], axis=3)
      cnv8_1 = slim.conv2d_transpose(
          skip, ngf, [4, 4], scope='conv8_1', stride=2)
      cnv8_2 = slim.conv2d(cnv8_1, ngf, [3, 3], scope='conv8_2', stride=1)

      feat = cnv8_2

      pred = slim.conv2d(
          feat,
          num_outputs, [1, 1],
          stride=1,
          activation_fn=tf.nn.tanh,
          normalizer_fn=None,
          scope='color_pred')
      return pred 
开发者ID:google,项目名称:stereo-magnification,代码行数:61,代码来源:nets.py

示例12: build_network

# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import layer_norm [as 别名]
def build_network(K, input, recurrent, output):
    with tf.name_scope('inner_RNN'):
        # build recurrent
        for i, layer in enumerate(recurrent):
            if layer['name'] == 'rnn':
                cell = tf.contrib.rnn.BasicRNNCell(layer['size'], activation=ACTIVATION_FUNCTIONS['linear'])
                cell = LayerNormWrapper(cell, apply_to='output', name='LayerNormR{}'.format(i)) if layer.get('ln') else cell
                cell = ActivationFunctionWrapper(cell, activation=layer['act'], apply_to='state')
                cell = ActivationFunctionWrapper(cell, activation=layer['act'], apply_to='output')

            elif layer['name'] == 'lstm':
                cell = tf.contrib.rnn.LayerNormBasicLSTMCell(layer['size'], layer_norm=layer.get('ln', False))

                if layer.get('act'):
                    print("WARNING: activation function arg for LSTM Cell is ignored. Default (tanh) is used in stead.")

            elif layer['name'] == 'r_nem':
                cell = R_NEM(encoder=layer['encoder'],
                             core=layer['core'],
                             context=layer['context'],
                             attention=layer['attention'],
                             actions=layer.get('actions', None),
                             size=layer['size'],
                             K=K)

                cell = LayerNormWrapper(cell, apply_to='output', name='LayerNormR{}'.format(i)) if layer.get('ln') else cell
                cell = ActivationFunctionWrapper(cell, activation=layer['act'], apply_to='state')
                cell = ActivationFunctionWrapper(cell, activation=layer['act'], apply_to='output')
            else:
                raise ValueError('Unknown recurrent name "{}"'.format(layer['name']))

        # build input
        for i, layer in reversed(list(enumerate(input))):
            if layer['name'] == 'reshape':
                cell = ReshapeWrapper(cell, layer['shape'], apply_to='input')
            else:
                cell = ActivationFunctionWrapper(cell, layer['act'], apply_to='input')
                cell = LayerNormWrapper(cell, apply_to='input', name='LayerNormI{}'.format(i)) if layer.get('ln') else cell
                cell = InputWrapper(cell, layer, name="InputWrapper{}".format(i))

        # build output
        for i, layer in enumerate(output):
            if layer['name'] == 'reshape':
                cell = ReshapeWrapper(cell, layer['shape'])
            else:
                n_out = layer.get('n_out', 1)
                cell = OutputWrapper(cell, layer, n_out=n_out, name="OutputWrapper{}".format(i))
                cell = LayerNormWrapper(cell, apply_to='output', name='LayerNormO{}'.format(i)) if layer.get('ln') else cell
                cell = ActivationFunctionWrapper(cell, layer['act'], apply_to='output')

        return cell 
开发者ID:sjoerdvansteenkiste,项目名称:Relational-NEM,代码行数:53,代码来源:network.py


注:本文中的tensorflow.contrib.slim.layer_norm方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。