本文整理汇总了Python中tensorflow.contrib.slim.get_or_create_global_step方法的典型用法代码示例。如果您正苦于以下问题:Python slim.get_or_create_global_step方法的具体用法?Python slim.get_or_create_global_step怎么用?Python slim.get_or_create_global_step使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.contrib.slim
的用法示例。
在下文中一共展示了slim.get_or_create_global_step方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: main
# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import get_or_create_global_step [as 别名]
def main(_):
if not tf.gfile.Exists(FLAGS.eval_log_dir):
tf.gfile.MakeDirs(FLAGS.eval_log_dir)
dataset = common_flags.create_dataset(split_name=FLAGS.split_name)
model = common_flags.create_model(dataset.num_char_classes,
dataset.max_sequence_length,
dataset.num_of_views, dataset.null_code)
data = data_provider.get_data(
dataset,
FLAGS.batch_size,
augment=False,
central_crop_size=common_flags.get_crop_size())
endpoints = model.create_base(data.images, labels_one_hot=None)
model.create_loss(data, endpoints)
eval_ops = model.create_summaries(
data, endpoints, dataset.charset, is_training=False)
slim.get_or_create_global_step()
session_config = tf.ConfigProto(device_count={"GPU": 0})
slim.evaluation.evaluation_loop(
master=FLAGS.master,
checkpoint_dir=FLAGS.train_log_dir,
logdir=FLAGS.eval_log_dir,
eval_op=eval_ops,
num_evals=FLAGS.num_batches,
eval_interval_secs=FLAGS.eval_interval_secs,
max_number_of_evaluations=FLAGS.number_of_steps,
session_config=session_config)
示例2: setup_training
# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import get_or_create_global_step [as 别名]
def setup_training(loss_op, initial_learning_rate, steps_per_decay,
learning_rate_decay, momentum, max_steps,
sync=False, adjust_lr_sync=True,
num_workers=1, replica_id=0, vars_to_optimize=None,
clip_gradient_norm=0, typ=None, momentum2=0.999,
adam_eps=1e-8):
if sync and adjust_lr_sync:
initial_learning_rate = initial_learning_rate * num_workers
max_steps = np.int(max_steps / num_workers)
steps_per_decay = np.int(steps_per_decay / num_workers)
global_step_op = slim.get_or_create_global_step()
lr_op = tf.train.exponential_decay(initial_learning_rate,
global_step_op, steps_per_decay, learning_rate_decay, staircase=True)
if typ == 'sgd':
optimizer = tf.train.MomentumOptimizer(lr_op, momentum)
elif typ == 'adam':
optimizer = tf.train.AdamOptimizer(learning_rate=lr_op, beta1=momentum,
beta2=momentum2, epsilon=adam_eps)
if sync:
sync_optimizer = tf.train.SyncReplicasOptimizer(optimizer,
replicas_to_aggregate=num_workers,
replica_id=replica_id,
total_num_replicas=num_workers)
train_op = slim.learning.create_train_op(loss_op, sync_optimizer,
variables_to_train=vars_to_optimize,
clip_gradient_norm=clip_gradient_norm)
else:
sync_optimizer = None
train_op = slim.learning.create_train_op(loss_op, optimizer,
variables_to_train=vars_to_optimize,
clip_gradient_norm=clip_gradient_norm)
should_stop_op = tf.greater_equal(global_step_op, max_steps)
return lr_op, global_step_op, train_op, should_stop_op, optimizer, sync_optimizer
示例3: _setup_np_inference
# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import get_or_create_global_step [as 别名]
def _setup_np_inference(self, np_images, checkpoint_path):
"""Sets up and restores inference graph, creates and caches a Session."""
tf.logging.info('Restoring model weights.')
# Define inference over an image placeholder.
_, height, width, _ = np.shape(np_images)
image_placeholder = tf.placeholder(
tf.float32, shape=(None, height, width, 3))
# Preprocess batch.
preprocessed = self.preprocess_data(image_placeholder, is_training=False)
# Unscale and jpeg encode preprocessed images for display purposes.
im_strings = preprocessing.unscale_jpeg_encode(preprocessed)
# Do forward pass to get embeddings.
embeddings = self.forward(preprocessed, is_training=False)
# Create a saver to restore model variables.
tf.train.get_or_create_global_step()
saver = tf.train.Saver(tf.all_variables())
self._image_placeholder = image_placeholder
self._batch_encoded = embeddings
self._np_inf_tensor_dict = {
'embeddings': embeddings,
'raw_image_strings': im_strings,
}
# Create a session and restore model variables.
self._sess = tf.Session()
saver.restore(self._sess, checkpoint_path)
示例4: get_restorer
# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import get_or_create_global_step [as 别名]
def get_restorer(self):
checkpoint_path = tf.train.latest_checkpoint(os.path.join(cfgs.TRAINED_CKPT, cfgs.VERSION))
if checkpoint_path != None:
if cfgs.RESTORE_FROM_RPN:
print('___restore from rpn___')
model_variables = slim.get_model_variables()
restore_variables = [var for var in model_variables if not var.name.startswith('FastRCNN_Head')] + \
[slim.get_or_create_global_step()]
for var in restore_variables:
print(var.name)
restorer = tf.train.Saver(restore_variables)
else:
restorer = tf.train.Saver()
print("model restore from :", checkpoint_path)
else:
checkpoint_path = cfgs.PRETRAINED_CKPT
print("model restore from pretrained mode, path is :", checkpoint_path)
model_variables = slim.get_model_variables()
# print(model_variables)
def name_in_ckpt_rpn(var):
return var.op.name
def name_in_ckpt_fastrcnn_head(var):
'''
Fast-RCNN/resnet_v1_50/block4 -->resnet_v1_50/block4
:param var:
:return:
'''
return '/'.join(var.op.name.split('/')[1:])
nameInCkpt_Var_dict = {}
for var in model_variables:
if var.name.startswith('Fast-RCNN/'+self.base_network_name+'/block4'):
var_name_in_ckpt = name_in_ckpt_fastrcnn_head(var)
nameInCkpt_Var_dict[var_name_in_ckpt] = var
else:
if var.name.startswith(self.base_network_name):
var_name_in_ckpt = name_in_ckpt_rpn(var)
nameInCkpt_Var_dict[var_name_in_ckpt] = var
else:
continue
restore_variables = nameInCkpt_Var_dict
for key, item in restore_variables.items():
print("var_in_graph: ", item.name)
print("var_in_ckpt: ", key)
print(20*"---")
restorer = tf.train.Saver(restore_variables)
print(20 * "****")
print("restore from pretrained_weighs in IMAGE_NET")
return restorer, checkpoint_path
示例5: get_restorer
# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import get_or_create_global_step [as 别名]
def get_restorer(self):
checkpoint_path = tf.train.latest_checkpoint(os.path.join(cfgs.TRAINED_CKPT, cfgs.VERSION))
if checkpoint_path != None:
if cfgs.RESTORE_FROM_RPN:
print('___restore from rpn___')
model_variables = slim.get_model_variables()
restore_variables = [var for var in model_variables if not var.name.startswith('FastRCNN_Head')] + \
[slim.get_or_create_global_step()]
for var in restore_variables:
print(var.name)
restorer = tf.train.Saver(restore_variables)
else:
restorer = tf.train.Saver()
print("model restore from :", checkpoint_path)
else:
checkpoint_path = cfgs.PRETRAINED_CKPT
print("model restore from pretrained mode, path is :", checkpoint_path)
model_variables = slim.get_model_variables()
# for var in model_variables:
# print(var.name)
# print(20*"__++__++__")
def name_in_ckpt_rpn(var):
return var.op.name
def name_in_ckpt_fastrcnn_head(var):
'''
Fast-RCNN/resnet_v1_50/block4 -->resnet_v1_50/block4
Fast-RCNN/MobilenetV2/** -- > MobilenetV2 **
:param var:
:return:
'''
return '/'.join(var.op.name.split('/')[1:])
nameInCkpt_Var_dict = {}
for var in model_variables:
if var.name.startswith('Fast-RCNN/'+self.base_network_name): # +'/block4'
var_name_in_ckpt = name_in_ckpt_fastrcnn_head(var)
nameInCkpt_Var_dict[var_name_in_ckpt] = var
else:
if var.name.startswith(self.base_network_name):
var_name_in_ckpt = name_in_ckpt_rpn(var)
nameInCkpt_Var_dict[var_name_in_ckpt] = var
else:
continue
restore_variables = nameInCkpt_Var_dict
for key, item in restore_variables.items():
print("var_in_graph: ", item.name)
print("var_in_ckpt: ", key)
print(20*"___")
restorer = tf.train.Saver(restore_variables)
print(20 * "****")
print("restore from pretrained_weighs in IMAGE_NET")
return restorer, checkpoint_path