本文整理汇总了Python中tensorflow.contrib.slim.fully_connected方法的典型用法代码示例。如果您正苦于以下问题:Python slim.fully_connected方法的具体用法?Python slim.fully_connected怎么用?Python slim.fully_connected使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.contrib.slim
的用法示例。
在下文中一共展示了slim.fully_connected方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: E
# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import fully_connected [as 别名]
def E(self, images, is_training = False, reuse=False):
if images.get_shape()[3] == 3:
images = tf.image.rgb_to_grayscale(images)
with tf.variable_scope('encoder',reuse=reuse):
with slim.arg_scope([slim.fully_connected], activation_fn=tf.nn.relu):
with slim.arg_scope([slim.conv2d], activation_fn=tf.nn.relu, padding='VALID'):
net = slim.conv2d(images, 64, 5, scope='conv1')
net = slim.max_pool2d(net, 2, stride=2, scope='pool1')
net = slim.conv2d(net, 128, 5, scope='conv2')
net = slim.max_pool2d(net, 2, stride=2, scope='pool2')
net = tf.contrib.layers.flatten(net)
net = slim.fully_connected(net, 1024, activation_fn=tf.nn.relu, scope='fc3')
net = slim.dropout(net, 0.5, is_training=is_training)
net = slim.fully_connected(net, self.hidden_repr_size, activation_fn=tf.tanh,scope='fc4')
# dropout here or not?
#~ net = slim.dropout(net, 0.5, is_training=is_training)
return net
示例2: mobilenetv2_scope
# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import fully_connected [as 别名]
def mobilenetv2_scope(is_training=True,
trainable=True,
weight_decay=0.00004,
stddev=0.09,
dropout_keep_prob=0.8,
bn_decay=0.997):
"""Defines Mobilenet training scope.
In default. We do not use BN
ReWrite the scope.
"""
batch_norm_params = {
'is_training': False,
'trainable': False,
'decay': bn_decay,
}
with slim.arg_scope(training_scope(is_training=is_training, weight_decay=weight_decay)):
with slim.arg_scope([slim.conv2d, slim.fully_connected, slim.separable_conv2d],
trainable=trainable):
with slim.arg_scope([slim.batch_norm], **batch_norm_params) as sc:
return sc
示例3: _build_aux_head
# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import fully_connected [as 别名]
def _build_aux_head(net, end_points, num_classes, hparams, scope):
"""Auxiliary head used for all models across all datasets."""
with tf.variable_scope(scope):
aux_logits = tf.identity(net)
with tf.variable_scope('aux_logits'):
aux_logits = slim.avg_pool2d(
aux_logits, [5, 5], stride=3, padding='VALID')
aux_logits = slim.conv2d(aux_logits, 128, [1, 1], scope='proj')
aux_logits = slim.batch_norm(aux_logits, scope='aux_bn0')
aux_logits = tf.nn.relu(aux_logits)
# Shape of feature map before the final layer.
shape = aux_logits.shape
if hparams.data_format == 'NHWC':
shape = shape[1:3]
else:
shape = shape[2:4]
aux_logits = slim.conv2d(aux_logits, 768, shape, padding='VALID')
aux_logits = slim.batch_norm(aux_logits, scope='aux_bn1')
aux_logits = tf.nn.relu(aux_logits)
aux_logits = contrib_layers.flatten(aux_logits)
aux_logits = slim.fully_connected(aux_logits, num_classes)
end_points['AuxLogits'] = aux_logits
示例4: _extra_conv_arg_scope
# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import fully_connected [as 别名]
def _extra_conv_arg_scope(weight_decay=0.00001, activation_fn=None, normalizer_fn=None):
with slim.arg_scope(
[slim.conv2d, slim.conv2d_transpose],
padding='SAME',
weights_regularizer=slim.l2_regularizer(weight_decay),
weights_initializer=tf.truncated_normal_initializer(stddev=0.001),
activation_fn=activation_fn,
normalizer_fn=normalizer_fn,) as arg_sc:
with slim.arg_scope(
[slim.fully_connected],
weights_regularizer=slim.l2_regularizer(weight_decay),
weights_initializer=tf.truncated_normal_initializer(stddev=0.001),
activation_fn=activation_fn,
normalizer_fn=normalizer_fn) as arg_sc:
return arg_sc
示例5: inference
# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import fully_connected [as 别名]
def inference(images, keep_probability, phase_train=True,
bottleneck_layer_size=128, weight_decay=0.0, reuse=None):
batch_norm_params = {
# Decay for the moving averages.
'decay': 0.995,
# epsilon to prevent 0s in variance.
'epsilon': 0.001,
# force in-place updates of mean and variance estimates
'updates_collections': None,
# Moving averages ends up in the trainable variables collection
'variables_collections': [ tf.GraphKeys.TRAINABLE_VARIABLES ],
}
with slim.arg_scope([slim.conv2d, slim.fully_connected],
weights_initializer=slim.initializers.xavier_initializer(),
weights_regularizer=slim.l2_regularizer(weight_decay),
normalizer_fn=slim.batch_norm,
normalizer_params=batch_norm_params):
return inception_resnet_v2(images, is_training=phase_train,
dropout_keep_prob=keep_probability, bottleneck_layer_size=bottleneck_layer_size, reuse=reuse)
示例6: inference
# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import fully_connected [as 别名]
def inference(images, keep_probability, phase_train=True, # @UnusedVariable
bottleneck_layer_size=128, bottleneck_layer_activation=None, weight_decay=0.0, reuse=None): # @UnusedVariable
batch_norm_params = {
# Decay for the moving averages.
'decay': 0.995,
# epsilon to prevent 0s in variance.
'epsilon': 0.001,
# force in-place updates of mean and variance estimates
'updates_collections': None,
# Moving averages ends up in the trainable variables collection
'variables_collections': [ tf.GraphKeys.TRAINABLE_VARIABLES ],
}
with slim.arg_scope([slim.conv2d, slim.fully_connected],
weights_initializer=tf.truncated_normal_initializer(stddev=0.1),
weights_regularizer=slim.l2_regularizer(weight_decay),
normalizer_fn=slim.batch_norm,
normalizer_params=batch_norm_params):
size = np.prod(images.get_shape()[1:].as_list())
net = slim.fully_connected(tf.reshape(images, (-1,size)), bottleneck_layer_size, activation_fn=None,
scope='Bottleneck', reuse=False)
return net, None
示例7: inference
# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import fully_connected [as 别名]
def inference(images, keep_probability, phase_train=True,
bottleneck_layer_size=128, weight_decay=0.0, reuse=None):
batch_norm_params = {
# Decay for the moving averages.
'decay': 0.995,
# epsilon to prevent 0s in variance.
'epsilon': 0.001,
# force in-place updates of mean and variance estimates
'updates_collections': None,
# Moving averages ends up in the trainable variables collection
'variables_collections': [ tf.GraphKeys.TRAINABLE_VARIABLES ],
}
with slim.arg_scope([slim.conv2d, slim.fully_connected],
weights_initializer=slim.initializers.xavier_initializer(),
weights_regularizer=slim.l2_regularizer(weight_decay),
normalizer_fn=slim.batch_norm,
normalizer_params=batch_norm_params):
return inception_resnet_v1(images, is_training=phase_train,
dropout_keep_prob=keep_probability, bottleneck_layer_size=bottleneck_layer_size, reuse=reuse)
示例8: encoder
# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import fully_connected [as 别名]
def encoder(self, images, is_training):
activation_fn = leaky_relu # tf.nn.relu
weight_decay = 0.0
with tf.variable_scope('encoder'):
with slim.arg_scope([slim.batch_norm],
is_training=is_training):
with slim.arg_scope([slim.conv2d, slim.fully_connected],
weights_initializer=tf.truncated_normal_initializer(stddev=0.1),
weights_regularizer=slim.l2_regularizer(weight_decay),
normalizer_fn=slim.batch_norm,
normalizer_params=self.batch_norm_params):
net = slim.conv2d(images, 32, [4, 4], 2, activation_fn=activation_fn, scope='Conv2d_1')
net = slim.conv2d(net, 64, [4, 4], 2, activation_fn=activation_fn, scope='Conv2d_2')
net = slim.conv2d(net, 128, [4, 4], 2, activation_fn=activation_fn, scope='Conv2d_3')
net = slim.conv2d(net, 256, [4, 4], 2, activation_fn=activation_fn, scope='Conv2d_4')
net = slim.conv2d(net, 512, [4, 4], 2, activation_fn=activation_fn, scope='Conv2d_5')
net = slim.flatten(net)
fc1 = slim.fully_connected(net, self.latent_variable_dim, activation_fn=None, normalizer_fn=None, scope='Fc_1')
fc2 = slim.fully_connected(net, self.latent_variable_dim, activation_fn=None, normalizer_fn=None, scope='Fc_2')
return fc1, fc2
示例9: encoder
# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import fully_connected [as 别名]
def encoder(self, images, is_training):
activation_fn = leaky_relu # tf.nn.relu
weight_decay = 0.0
with tf.variable_scope('encoder'):
with slim.arg_scope([slim.batch_norm],
is_training=is_training):
with slim.arg_scope([slim.conv2d, slim.fully_connected],
weights_initializer=tf.truncated_normal_initializer(stddev=0.1),
weights_regularizer=slim.l2_regularizer(weight_decay),
normalizer_fn=slim.batch_norm,
normalizer_params=self.batch_norm_params):
net = slim.conv2d(images, 32, [4, 4], 2, activation_fn=activation_fn, scope='Conv2d_1')
net = slim.conv2d(net, 64, [4, 4], 2, activation_fn=activation_fn, scope='Conv2d_2')
net = slim.conv2d(net, 128, [4, 4], 2, activation_fn=activation_fn, scope='Conv2d_3')
net = slim.conv2d(net, 256, [4, 4], 2, activation_fn=activation_fn, scope='Conv2d_4')
net = slim.flatten(net)
fc1 = slim.fully_connected(net, self.latent_variable_dim, activation_fn=None, normalizer_fn=None, scope='Fc_1')
fc2 = slim.fully_connected(net, self.latent_variable_dim, activation_fn=None, normalizer_fn=None, scope='Fc_2')
return fc1, fc2
示例10: _arg_scope
# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import fully_connected [as 别名]
def _arg_scope(self, is_training, reuse=None):
weight_decay = 0.0
keep_probability = 1.0
batch_norm_params = {
'is_training': is_training,
# Decay for the moving averages.
'decay': 0.995,
# epsilon to prevent 0s in variance.
'epsilon': 0.001
}
with slim.arg_scope([slim.conv2d, slim.fully_connected],
weights_initializer=slim.xavier_initializer_conv2d(uniform=True),
weights_regularizer=slim.l2_regularizer(weight_decay),
normalizer_fn=slim.batch_norm,
normalizer_params=batch_norm_params):
with tf.variable_scope(self._scope, self._scope, reuse=reuse):
with slim.arg_scope([slim.batch_norm, slim.dropout],
is_training=is_training) as sc:
return sc
示例11: squeeze_excitation_layer
# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import fully_connected [as 别名]
def squeeze_excitation_layer(input_x, out_dim, ratio, layer_name, is_training):
with tf.name_scope(layer_name):
# Global_Average_Pooling
squeeze = tf.reduce_mean(input_x, [1, 2])
excitation = slim.fully_connected(inputs=squeeze,
num_outputs=out_dim // ratio,
weights_initializer=cfgs.BBOX_INITIALIZER,
activation_fn=tf.nn.relu,
trainable=is_training,
scope=layer_name+'_fully_connected1')
excitation = slim.fully_connected(inputs=excitation,
num_outputs=out_dim,
weights_initializer=cfgs.BBOX_INITIALIZER,
activation_fn=tf.nn.sigmoid,
trainable=is_training,
scope=layer_name + '_fully_connected2')
excitation = tf.reshape(excitation, [-1, 1, 1, out_dim])
# scale = input_x * excitation
return excitation
示例12: mobilenetv2_scope
# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import fully_connected [as 别名]
def mobilenetv2_scope(is_training=True,
trainable=True,
weight_decay=0.00004,
stddev=0.09,
dropout_keep_prob=0.8,
bn_decay=0.997):
"""Defines Mobilenet training scope.
In default. We do not use BN
ReWrite the scope.
"""
batch_norm_params = {
'is_training': False,
'trainable': False,
'decay': bn_decay,
}
with slim.arg_scope(training_scope(is_training=is_training, weight_decay=weight_decay)):
with slim.arg_scope([slim.conv2d, slim.fully_connected, slim.separable_conv2d],
trainable=trainable):
with slim.arg_scope([slim.batch_norm], **batch_norm_params) as sc:
return sc
示例13: create_model
# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import fully_connected [as 别名]
def create_model(self,
model_input,
vocab_size,
num_mixtures=None,
l2_penalty=1e-8,
sub_scope="",
original_input=None,
**unused_params):
num_methods = model_input.get_shape().as_list()[-1]
num_features = model_input.get_shape().as_list()[-2]
original_input = tf.nn.l2_normalize(original_input, dim=1)
gate_activations = slim.fully_connected(
original_input,
num_methods,
activation_fn=tf.nn.softmax,
weights_regularizer=slim.l2_regularizer(l2_penalty),
scope="gates"+sub_scope)
output = tf.einsum("ijk,ik->ij", model_input, gate_activations)
return {"predictions": output}
示例14: create_model
# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import fully_connected [as 别名]
def create_model(self, model_input, vocab_size, num_mixtures=None,
l2_penalty=1e-8, sub_scope="", original_input=None, **unused_params):
num_supports = FLAGS.num_supports
num_layers = FLAGS.hidden_chain_layers
relu_cells = FLAGS.hidden_chain_relu_cells
next_input = model_input
support_predictions = []
for layer in xrange(num_layers):
sub_relu = slim.fully_connected(
next_input,
relu_cells,
activation_fn=tf.nn.relu,
weights_regularizer=slim.l2_regularizer(l2_penalty),
scope=sub_scope+"relu-%d"%layer)
sub_prediction = self.sub_model(sub_relu, vocab_size, sub_scope=sub_scope+"prediction-%d"%layer)
relu_norm = tf.nn.l2_normalize(sub_relu, dim=1)
next_input = tf.concat([next_input, relu_norm], axis=1)
support_predictions.append(sub_prediction)
main_predictions = self.sub_model(next_input, vocab_size, sub_scope=sub_scope+"-main")
support_predictions = tf.concat(support_predictions, axis=1)
return {"predictions": main_predictions, "support_predictions": support_predictions}
示例15: create_model
# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import fully_connected [as 别名]
def create_model(self, model_input, vocab_size, num_mixtures=None,
l2_penalty=1e-8, sub_scope="", original_input=None, **unused_params):
num_supports = FLAGS.num_supports
num_layers = FLAGS.hidden_chain_layers
relu_cells = FLAGS.hidden_chain_relu_cells
next_input = model_input
support_predictions = []
for layer in xrange(num_layers):
sub_relu = slim.fully_connected(
next_input,
relu_cells,
activation_fn=tf.nn.relu,
weights_regularizer=slim.l2_regularizer(l2_penalty),
scope=sub_scope+"relu-%d"%layer)
sub_prediction = self.sub_model(sub_relu, vocab_size, sub_scope=sub_scope+"prediction-%d"%layer)
relu_norm = tf.nn.l2_normalize(sub_relu, dim=1)
next_input = tf.concat([model_input, relu_norm], axis=1)
support_predictions.append(sub_prediction)
main_predictions = self.sub_model(next_input, vocab_size, sub_scope=sub_scope+"-main")
support_predictions = tf.concat(support_predictions, axis=1)
return {"predictions": main_predictions, "support_predictions": support_predictions}