本文整理汇总了Python中tensorflow.contrib.slim.conv2d方法的典型用法代码示例。如果您正苦于以下问题:Python slim.conv2d方法的具体用法?Python slim.conv2d怎么用?Python slim.conv2d使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.contrib.slim
的用法示例。
在下文中一共展示了slim.conv2d方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: AddConvLayer
# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import conv2d [as 别名]
def AddConvLayer(self, prev_layer, index):
"""Add a single standard convolutional layer.
Args:
prev_layer: Input tensor.
index: Position in model_str to start parsing
Returns:
Output tensor, end index in model_str.
"""
pattern = re.compile(R'(C)(s|t|r|l|m)({\w+})?(\d+),(\d+),(\d+)')
m = pattern.match(self.model_str, index)
if m is None:
return None, None
name = self._GetLayerName(m.group(0), index, m.group(3))
width = int(m.group(4))
height = int(m.group(5))
depth = int(m.group(6))
fn = self._NonLinearity(m.group(2))
return slim.conv2d(
prev_layer, depth, [height, width], activation_fn=fn,
scope=name), m.end()
示例2: model
# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import conv2d [as 别名]
def model(image):
image = mean_image_subtraction(image)
with slim.arg_scope(vgg.vgg_arg_scope()):
conv5_3 = vgg.vgg_16(image)
rpn_conv = slim.conv2d(conv5_3, 512, 3)
lstm_output = Bilstm(rpn_conv, 512, 128, 512, scope_name='BiLSTM')
bbox_pred = lstm_fc(lstm_output, 512, 10 * 4, scope_name="bbox_pred")
cls_pred = lstm_fc(lstm_output, 512, 10 * 2, scope_name="cls_pred")
# transpose: (1, H, W, A x d) -> (1, H, WxA, d)
cls_pred_shape = tf.shape(cls_pred)
cls_pred_reshape = tf.reshape(cls_pred, [cls_pred_shape[0], cls_pred_shape[1], -1, 2])
cls_pred_reshape_shape = tf.shape(cls_pred_reshape)
cls_prob = tf.reshape(tf.nn.softmax(tf.reshape(cls_pred_reshape, [-1, cls_pred_reshape_shape[3]])),
[-1, cls_pred_reshape_shape[1], cls_pred_reshape_shape[2], cls_pred_reshape_shape[3]],
name="cls_prob")
return bbox_pred, cls_pred, cls_prob
示例3: delf_attention
# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import conv2d [as 别名]
def delf_attention(feature_map, config, is_training, arg_scope=None):
with tf.variable_scope('attonly/attention/compute'):
with slim.arg_scope(arg_scope):
is_training = config['train_attention'] and is_training
with slim.arg_scope([slim.conv2d, slim.batch_norm],
trainable=is_training):
with slim.arg_scope([slim.batch_norm], is_training=is_training):
attention = slim.conv2d(
feature_map, 512, config['attention_kernel'], rate=1,
activation_fn=tf.nn.relu, scope='conv1')
attention = slim.conv2d(
attention, 1, config['attention_kernel'], rate=1,
activation_fn=None, normalizer_fn=None, scope='conv2')
attention = tf.nn.softplus(attention)
if config['normalize_feature_map']:
feature_map = tf.nn.l2_normalize(feature_map, -1)
descriptor = tf.reduce_sum(feature_map*attention, axis=[1, 2])
if config['normalize_average']:
descriptor /= tf.reduce_sum(attention, axis=[1, 2])
return descriptor
示例4: tower
# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import conv2d [as 别名]
def tower(image, mode, config):
image = image_normalization(image)
if image.shape[-1] == 1:
image = tf.tile(image, [1, 1, 1, 3])
with slim.arg_scope(resnet.resnet_arg_scope()):
is_training = config['train_backbone'] and (mode == Mode.TRAIN)
with slim.arg_scope([slim.conv2d, slim.batch_norm], trainable=is_training):
_, encoder = resnet.resnet_v1_50(image,
is_training=is_training,
global_pool=False,
scope='resnet_v1_50')
feature_map = encoder['resnet_v1_50/block3']
if config['use_attention']:
descriptor = delf_attention(feature_map, config, mode == Mode.TRAIN,
resnet.resnet_arg_scope())
else:
descriptor = tf.reduce_max(feature_map, [1, 2])
if config['dimensionality_reduction']:
descriptor = dimensionality_reduction(descriptor, config)
return descriptor
示例5: tower
# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import conv2d [as 别名]
def tower(image, mode, config):
image = image_normalization(image)
if image.shape[-1] == 1:
image = tf.tile(image, [1, 1, 1, 3])
with slim.arg_scope(resnet.resnet_arg_scope()):
training = config['train_backbone'] and (mode == Mode.TRAIN)
with slim.arg_scope([slim.conv2d, slim.batch_norm], trainable=training):
_, encoder = resnet.resnet_v1_50(image,
is_training=training,
global_pool=False,
scope='resnet_v1_50')
feature_map = encoder['resnet_v1_50/block3']
descriptor = vlad(feature_map, config, mode == Mode.TRAIN)
if config['dimensionality_reduction']:
descriptor = dimensionality_reduction(descriptor, config)
return descriptor
示例6: E
# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import conv2d [as 别名]
def E(self, images, is_training = False, reuse=False):
if images.get_shape()[3] == 3:
images = tf.image.rgb_to_grayscale(images)
with tf.variable_scope('encoder',reuse=reuse):
with slim.arg_scope([slim.fully_connected], activation_fn=tf.nn.relu):
with slim.arg_scope([slim.conv2d], activation_fn=tf.nn.relu, padding='VALID'):
net = slim.conv2d(images, 64, 5, scope='conv1')
net = slim.max_pool2d(net, 2, stride=2, scope='pool1')
net = slim.conv2d(net, 128, 5, scope='conv2')
net = slim.max_pool2d(net, 2, stride=2, scope='pool2')
net = tf.contrib.layers.flatten(net)
net = slim.fully_connected(net, 1024, activation_fn=tf.nn.relu, scope='fc3')
net = slim.dropout(net, 0.5, is_training=is_training)
net = slim.fully_connected(net, self.hidden_repr_size, activation_fn=tf.tanh,scope='fc4')
# dropout here or not?
#~ net = slim.dropout(net, 0.5, is_training=is_training)
return net
示例7: mobilenetv2_scope
# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import conv2d [as 别名]
def mobilenetv2_scope(is_training=True,
trainable=True,
weight_decay=0.00004,
stddev=0.09,
dropout_keep_prob=0.8,
bn_decay=0.997):
"""Defines Mobilenet training scope.
In default. We do not use BN
ReWrite the scope.
"""
batch_norm_params = {
'is_training': False,
'trainable': False,
'decay': bn_decay,
}
with slim.arg_scope(training_scope(is_training=is_training, weight_decay=weight_decay)):
with slim.arg_scope([slim.conv2d, slim.fully_connected, slim.separable_conv2d],
trainable=trainable):
with slim.arg_scope([slim.batch_norm], **batch_norm_params) as sc:
return sc
示例8: _build_aux_head
# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import conv2d [as 别名]
def _build_aux_head(net, end_points, num_classes, hparams, scope):
"""Auxiliary head used for all models across all datasets."""
with tf.variable_scope(scope):
aux_logits = tf.identity(net)
with tf.variable_scope('aux_logits'):
aux_logits = slim.avg_pool2d(
aux_logits, [5, 5], stride=3, padding='VALID')
aux_logits = slim.conv2d(aux_logits, 128, [1, 1], scope='proj')
aux_logits = slim.batch_norm(aux_logits, scope='aux_bn0')
aux_logits = tf.nn.relu(aux_logits)
# Shape of feature map before the final layer.
shape = aux_logits.shape
if hparams.data_format == 'NHWC':
shape = shape[1:3]
else:
shape = shape[2:4]
aux_logits = slim.conv2d(aux_logits, 768, shape, padding='VALID')
aux_logits = slim.batch_norm(aux_logits, scope='aux_bn1')
aux_logits = tf.nn.relu(aux_logits)
aux_logits = contrib_layers.flatten(aux_logits)
aux_logits = slim.fully_connected(aux_logits, num_classes)
end_points['AuxLogits'] = aux_logits
示例9: _reduce_prev_layer
# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import conv2d [as 别名]
def _reduce_prev_layer(self, prev_layer, curr_layer):
"""Matches dimension of prev_layer to the curr_layer."""
# Set the prev layer to the current layer if it is none
if prev_layer is None:
return curr_layer
curr_num_filters = self._filter_size
prev_num_filters = get_channel_dim(prev_layer.shape)
curr_filter_shape = int(curr_layer.shape[2])
prev_filter_shape = int(prev_layer.shape[2])
if curr_filter_shape != prev_filter_shape:
prev_layer = tf.nn.relu(prev_layer)
prev_layer = factorized_reduction(prev_layer, curr_num_filters, stride=2)
elif curr_num_filters != prev_num_filters:
prev_layer = tf.nn.relu(prev_layer)
prev_layer = slim.conv2d(
prev_layer, curr_num_filters, 1, scope='prev_1x1')
prev_layer = slim.batch_norm(prev_layer, scope='prev_bn')
return prev_layer
示例10: _fixed_padding
# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import conv2d [as 别名]
def _fixed_padding(inputs, kernel_size, rate=1):
"""Pads the input along the spatial dimensions independently of input size.
Pads the input such that if it was used in a convolution with 'VALID' padding,
the output would have the same dimensions as if the unpadded input was used
in a convolution with 'SAME' padding.
Args:
inputs: A tensor of size [batch, height_in, width_in, channels].
kernel_size: The kernel to be used in the conv2d or max_pool2d operation.
rate: An integer, rate for atrous convolution.
Returns:
output: A tensor of size [batch, height_out, width_out, channels] with the
input, either intact (if kernel_size == 1) or padded (if kernel_size > 1).
"""
kernel_size_effective = [kernel_size[0] + (kernel_size[0] - 1) * (rate - 1),
kernel_size[0] + (kernel_size[0] - 1) * (rate - 1)]
pad_total = [kernel_size_effective[0] - 1, kernel_size_effective[1] - 1]
pad_beg = [pad_total[0] // 2, pad_total[1] // 2]
pad_end = [pad_total[0] - pad_beg[0], pad_total[1] - pad_beg[1]]
padded_inputs = tf.pad(inputs, [[0, 0], [pad_beg[0], pad_end[0]],
[pad_beg[1], pad_end[1]], [0, 0]])
return padded_inputs
示例11: _extra_conv_arg_scope_with_bn
# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import conv2d [as 别名]
def _extra_conv_arg_scope_with_bn(weight_decay=0.00001,
activation_fn=None,
batch_norm_decay=0.997,
batch_norm_epsilon=1e-5,
batch_norm_scale=True):
batch_norm_params = {
'decay': batch_norm_decay,
'epsilon': batch_norm_epsilon,
'scale': batch_norm_scale,
'updates_collections': tf.GraphKeys.UPDATE_OPS,
}
with slim.arg_scope(
[slim.conv2d],
weights_regularizer=slim.l2_regularizer(weight_decay),
weights_initializer=slim.variance_scaling_initializer(),
activation_fn=tf.nn.relu,
normalizer_fn=slim.batch_norm,
normalizer_params=batch_norm_params):
with slim.arg_scope([slim.batch_norm], **batch_norm_params):
with slim.arg_scope([slim.max_pool2d], padding='SAME') as arg_sc:
return arg_sc
示例12: _extra_conv_arg_scope
# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import conv2d [as 别名]
def _extra_conv_arg_scope(weight_decay=0.00001, activation_fn=None, normalizer_fn=None):
with slim.arg_scope(
[slim.conv2d, slim.conv2d_transpose],
padding='SAME',
weights_regularizer=slim.l2_regularizer(weight_decay),
weights_initializer=tf.truncated_normal_initializer(stddev=0.001),
activation_fn=activation_fn,
normalizer_fn=normalizer_fn,) as arg_sc:
with slim.arg_scope(
[slim.fully_connected],
weights_regularizer=slim.l2_regularizer(weight_decay),
weights_initializer=tf.truncated_normal_initializer(stddev=0.001),
activation_fn=activation_fn,
normalizer_fn=normalizer_fn) as arg_sc:
return arg_sc
示例13: block35
# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import conv2d [as 别名]
def block35(net, scale=1.0, activation_fn=tf.nn.relu, scope=None, reuse=None):
"""Builds the 35x35 resnet block."""
with tf.variable_scope(scope, 'Block35', [net], reuse=reuse):
with tf.variable_scope('Branch_0'):
tower_conv = slim.conv2d(net, 32, 1, scope='Conv2d_1x1')
with tf.variable_scope('Branch_1'):
tower_conv1_0 = slim.conv2d(net, 32, 1, scope='Conv2d_0a_1x1')
tower_conv1_1 = slim.conv2d(tower_conv1_0, 32, 3, scope='Conv2d_0b_3x3')
with tf.variable_scope('Branch_2'):
tower_conv2_0 = slim.conv2d(net, 32, 1, scope='Conv2d_0a_1x1')
tower_conv2_1 = slim.conv2d(tower_conv2_0, 48, 3, scope='Conv2d_0b_3x3')
tower_conv2_2 = slim.conv2d(tower_conv2_1, 64, 3, scope='Conv2d_0c_3x3')
mixed = tf.concat([tower_conv, tower_conv1_1, tower_conv2_2], 3)
up = slim.conv2d(mixed, net.get_shape()[3], 1, normalizer_fn=None,
activation_fn=None, scope='Conv2d_1x1')
net += scale * up
if activation_fn:
net = activation_fn(net)
return net
# Inception-Resnet-B
示例14: block17
# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import conv2d [as 别名]
def block17(net, scale=1.0, activation_fn=tf.nn.relu, scope=None, reuse=None):
"""Builds the 17x17 resnet block."""
with tf.variable_scope(scope, 'Block17', [net], reuse=reuse):
with tf.variable_scope('Branch_0'):
tower_conv = slim.conv2d(net, 192, 1, scope='Conv2d_1x1')
with tf.variable_scope('Branch_1'):
tower_conv1_0 = slim.conv2d(net, 128, 1, scope='Conv2d_0a_1x1')
tower_conv1_1 = slim.conv2d(tower_conv1_0, 160, [1, 7],
scope='Conv2d_0b_1x7')
tower_conv1_2 = slim.conv2d(tower_conv1_1, 192, [7, 1],
scope='Conv2d_0c_7x1')
mixed = tf.concat([tower_conv, tower_conv1_2], 3)
up = slim.conv2d(mixed, net.get_shape()[3], 1, normalizer_fn=None,
activation_fn=None, scope='Conv2d_1x1')
net += scale * up
if activation_fn:
net = activation_fn(net)
return net
# Inception-Resnet-C
示例15: block8
# 需要导入模块: from tensorflow.contrib import slim [as 别名]
# 或者: from tensorflow.contrib.slim import conv2d [as 别名]
def block8(net, scale=1.0, activation_fn=tf.nn.relu, scope=None, reuse=None):
"""Builds the 8x8 resnet block."""
with tf.variable_scope(scope, 'Block8', [net], reuse=reuse):
with tf.variable_scope('Branch_0'):
tower_conv = slim.conv2d(net, 192, 1, scope='Conv2d_1x1')
with tf.variable_scope('Branch_1'):
tower_conv1_0 = slim.conv2d(net, 192, 1, scope='Conv2d_0a_1x1')
tower_conv1_1 = slim.conv2d(tower_conv1_0, 224, [1, 3],
scope='Conv2d_0b_1x3')
tower_conv1_2 = slim.conv2d(tower_conv1_1, 256, [3, 1],
scope='Conv2d_0c_3x1')
mixed = tf.concat([tower_conv, tower_conv1_2], 3)
up = slim.conv2d(mixed, net.get_shape()[3], 1, normalizer_fn=None,
activation_fn=None, scope='Conv2d_1x1')
net += scale * up
if activation_fn:
net = activation_fn(net)
return net