本文整理汇总了Python中tensorflow.contrib.session_bundle.exporter.Exporter方法的典型用法代码示例。如果您正苦于以下问题:Python exporter.Exporter方法的具体用法?Python exporter.Exporter怎么用?Python exporter.Exporter使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.contrib.session_bundle.exporter
的用法示例。
在下文中一共展示了exporter.Exporter方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _export_graph
# 需要导入模块: from tensorflow.contrib.session_bundle import exporter [as 别名]
# 或者: from tensorflow.contrib.session_bundle.exporter import Exporter [as 别名]
def _export_graph(graph, saver, checkpoint_path, export_dir,
default_graph_signature, named_graph_signatures,
exports_to_keep):
"""Exports graph via session_bundle, by creating a Session."""
with graph.as_default():
with tf_session.Session('') as session:
variables.local_variables_initializer()
lookup_ops.tables_initializer()
saver.restore(session, checkpoint_path)
export = exporter.Exporter(saver)
export.init(
init_op=control_flow_ops.group(
variables.local_variables_initializer(),
lookup_ops.tables_initializer()),
default_graph_signature=default_graph_signature,
named_graph_signatures=named_graph_signatures,
assets_collection=ops.get_collection(ops.GraphKeys.ASSET_FILEPATHS))
return export.export(export_dir, contrib_variables.get_global_step(),
session, exports_to_keep=exports_to_keep)
示例2: _export_graph
# 需要导入模块: from tensorflow.contrib.session_bundle import exporter [as 别名]
# 或者: from tensorflow.contrib.session_bundle.exporter import Exporter [as 别名]
def _export_graph(graph, saver, checkpoint_path, export_dir,
default_graph_signature, named_graph_signatures,
exports_to_keep):
"""Exports graph via session_bundle, by creating a Session."""
with graph.as_default():
with tf_session.Session('') as session:
variables.local_variables_initializer()
data_flow_ops.tables_initializer()
saver.restore(session, checkpoint_path)
export = exporter.Exporter(saver)
export.init(init_op=control_flow_ops.group(
variables.local_variables_initializer(),
data_flow_ops.tables_initializer()),
default_graph_signature=default_graph_signature,
named_graph_signatures=named_graph_signatures,
assets_collection=ops.get_collection(
ops.GraphKeys.ASSET_FILEPATHS))
return export.export(export_dir, contrib_variables.get_global_step(),
session, exports_to_keep=exports_to_keep)
示例3: _export_graph
# 需要导入模块: from tensorflow.contrib.session_bundle import exporter [as 别名]
# 或者: from tensorflow.contrib.session_bundle.exporter import Exporter [as 别名]
def _export_graph(graph, saver, checkpoint_path, export_dir,
default_graph_signature, named_graph_signatures,
exports_to_keep):
"""Exports graph via session_bundle, by creating a Session."""
with graph.as_default():
with tf_session.Session('') as session:
variables.local_variables_initializer()
data_flow_ops.initialize_all_tables()
saver.restore(session, checkpoint_path)
export = exporter.Exporter(saver)
export.init(init_op=control_flow_ops.group(
variables.local_variables_initializer(),
data_flow_ops.initialize_all_tables()),
default_graph_signature=default_graph_signature,
named_graph_signatures=named_graph_signatures,
assets_collection=ops.get_collection(
ops.GraphKeys.ASSET_FILEPATHS))
return export.export(export_dir, contrib_variables.get_global_step(),
session, exports_to_keep=exports_to_keep)
示例4: Export
# 需要导入模块: from tensorflow.contrib.session_bundle import exporter [as 别名]
# 或者: from tensorflow.contrib.session_bundle.exporter import Exporter [as 别名]
def Export():
export_path = "/tmp/half_plus_two"
with tf.Session() as sess:
# Make model parameters a&b variables instead of constants to
# exercise the variable reloading mechanisms.
a = tf.Variable(0.5)
b = tf.Variable(2.0)
# Calculate, y = a*x + b
# here we use a placeholder 'x' which is fed at inference time.
x = tf.placeholder(tf.float32)
y = tf.add(tf.multiply(a, x), b)
# Run an export.
tf.global_variables_initializer().run()
export = exporter.Exporter(tf.train.Saver())
export.init(named_graph_signatures={
"inputs": exporter.generic_signature({"x": x}),
"outputs": exporter.generic_signature({"y": y}),
"regress": exporter.regression_signature(x, y)
})
export.export(export_path, tf.constant(123), sess)
示例5: export_session_bundle
# 需要导入模块: from tensorflow.contrib.session_bundle import exporter [as 别名]
# 或者: from tensorflow.contrib.session_bundle.exporter import Exporter [as 别名]
def export_session_bundle(self):
export_dir_base = self.saver_spec.get('export_directory')
if not export_dir_base:
print("export_directory is None")
checkpoint = tf.train.latest_checkpoint(self.saver_directory)
if not checkpoint:
raise NotFittedError("Couldn't find trained model at %s." % self.saver_directory)
export_dir = saved_model_export_utils.get_timestamped_export_dir(export_dir_base)
if self.distributed_spec:
sess = tf.Session(target=self.server.target, graph=self.graph, config=self.session_config)
else:
sess = tf.Session(graph=self.graph)
self.scaffold.saver.restore(sess, checkpoint)
signature = {name: ts for name, ts in self.states_input.items()}
signature["deterministic"] = self.deterministic_input
signature["update"] = self.update_input
exporter = Exporter(self.scaffold.saver)
exporter.init(self.graph.as_graph_def(),
clear_devices=True,
default_graph_signature=generic_signature(signature))
exporter.export(export_dir_base=export_dir,
global_step_tensor=self.timestep,
sess=sess)
return export_dir
示例6: saveWithSavedModel
# 需要导入模块: from tensorflow.contrib.session_bundle import exporter [as 别名]
# 或者: from tensorflow.contrib.session_bundle.exporter import Exporter [as 别名]
def saveWithSavedModel():
# K.set_learning_phase(0) # all new operations will be in test mode from now on
# wordIndex = loadWordIndex()
model = createModel()
model.load_weights(KERAS_WEIGHTS_FILE)
export_path = os.path.join(PUNCTUATOR_DIR, 'graph') # where to save the exported graph
shutil.rmtree(export_path, True)
export_version = 1 # version number (integer)
import tensorflow as tf
sess = tf.Session()
saver = tf.train.Saver(sharded=True)
from tensorflow.contrib.session_bundle import exporter
model_exporter = exporter.Exporter(saver)
signature = exporter.classification_signature(input_tensor=model.input,scores_tensor=model.output)
# model_exporter.init(sess.graph.as_graph_def(),default_graph_signature=signature)
tf.initialize_all_variables().run(session=sess)
# model_exporter.export(export_path, tf.constant(export_version), sess)
from tensorflow.python.saved_model import builder as saved_model_builder
builder = saved_model_builder.SavedModelBuilder(export_path)
from tensorflow.python.saved_model import signature_constants
from tensorflow.python.saved_model import tag_constants
legacy_init_op = tf.group(tf.tables_initializer(), name='legacy_init_op')
from tensorflow.python.saved_model.signature_def_utils_impl import predict_signature_def
signature_def = predict_signature_def(
{signature_constants.PREDICT_INPUTS: model.input},
{signature_constants.PREDICT_OUTPUTS: model.output})
builder.add_meta_graph_and_variables(
sess, [tag_constants.SERVING],
signature_def_map={
signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
signature_def
},
legacy_init_op=legacy_init_op)
builder.save()
示例7: export_model
# 需要导入模块: from tensorflow.contrib.session_bundle import exporter [as 别名]
# 或者: from tensorflow.contrib.session_bundle.exporter import Exporter [as 别名]
def export_model(sess, inputs_signature, outputs_signature):
# Export the model for generic inference service
print("Exporting trained model to {}".format(FLAGS.model_path))
saver = tf.train.Saver(sharded=True)
model_exporter = exporter.Exporter(saver)
model_exporter.init(
sess.graph.as_graph_def(),
named_graph_signatures={
"inputs": exporter.generic_signature(inputs_signature),
"outputs": exporter.generic_signature(outputs_signature)
})
model_exporter.export(FLAGS.model_path, tf.constant(FLAGS.model_version),
sess)
print("Done exporting!")
示例8: main
# 需要导入模块: from tensorflow.contrib.session_bundle import exporter [as 别名]
# 或者: from tensorflow.contrib.session_bundle.exporter import Exporter [as 别名]
def main():
# Define training data
x = np.ones(FLAGS.batch_size)
y = np.ones(FLAGS.batch_size)
# Define the model
X = tf.placeholder(tf.float32, shape=[None])
Y = tf.placeholder(tf.float32, shape=[None])
w = tf.Variable(1.0, name="weight")
b = tf.Variable(1.0, name="bias")
loss = tf.square(Y - tf.mul(X, w) - b)
train_op = tf.train.GradientDescentOptimizer(0.01).minimize(loss)
predict_op = tf.mul(X, w) + b
saver = tf.train.Saver()
checkpoint_dir = FLAGS.checkpoint_dir
checkpoint_file = checkpoint_dir + "/checkpoint.ckpt"
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
# Start the session
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
if ckpt and ckpt.model_checkpoint_path:
print("Continue training from the model {}".format(ckpt.model_checkpoint_path))
saver.restore(sess, ckpt.model_checkpoint_path)
# Start training
start_time = time.time()
for epoch in range(FLAGS.epoch_number):
sess.run(train_op, feed_dict={X: x, Y: y})
# Start validating
if epoch % FLAGS.steps_to_validate == 0:
end_time = time.time()
print("[{}] Epoch: {}".format(end_time - start_time, epoch))
saver.save(sess, checkpoint_file)
start_time = end_time
# Print model variables
w_value, b_value = sess.run([w, b])
print("The model of w: {}, b: {}".format(w_value, b_value))
# Export the model
print("Exporting trained model to {}".format(FLAGS.model_path))
model_exporter = exporter.Exporter(saver)
model_exporter.init(
sess.graph.as_graph_def(),
named_graph_signatures={
'inputs': exporter.generic_signature({"features": X}),
'outputs': exporter.generic_signature({"prediction": predict_op})
})
model_exporter.export(FLAGS.model_path, tf.constant(FLAGS.export_version), sess)
print 'Done exporting!'