本文整理汇总了Python中tensorflow.contrib.seq2seq.tile_batch方法的典型用法代码示例。如果您正苦于以下问题:Python seq2seq.tile_batch方法的具体用法?Python seq2seq.tile_batch怎么用?Python seq2seq.tile_batch使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.contrib.seq2seq
的用法示例。
在下文中一共展示了seq2seq.tile_batch方法的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_basic_rnn_decoder_given_initial_state
# 需要导入模块: from tensorflow.contrib import seq2seq [as 别名]
# 或者: from tensorflow.contrib.seq2seq import tile_batch [as 别名]
def test_basic_rnn_decoder_given_initial_state(self):
"""Tests beam search with BasicRNNDecoder given initial state.
"""
hparams = {
"rnn_cell": {
"kwargs": {"num_units": self._cell_dim}
}
}
decoder = tx.modules.BasicRNNDecoder(
vocab_size=self._vocab_size,
hparams=hparams)
# (zhiting): The beam search decoder does not generate max-length
# samples if only one cell_state is created. Perhaps due to
# random seed or bugs?
cell_state = decoder.cell.zero_state(self._batch_size, tf.float32)
self._test_beam_search(decoder, initial_state=cell_state)
tiled_cell_state = tile_batch(cell_state, multiplier=self._beam_width)
self._test_beam_search(
decoder, tiled_initial_state=tiled_cell_state, initiated=True)
示例2: _build_attention_mechanism
# 需要导入模块: from tensorflow.contrib import seq2seq [as 别名]
# 或者: from tensorflow.contrib.seq2seq import tile_batch [as 别名]
def _build_attention_mechanism(self, feature_maps):
"""Build (possibly multiple) attention mechanisms."""
def _build_single_attention_mechanism(memory):
if not self._is_training:
memory = seq2seq.tile_batch(memory, multiplier=self._beam_width)
return seq2seq.BahdanauAttention(
self._num_attention_units,
memory,
memory_sequence_length=None
)
feature_sequences = [tf.squeeze(map, axis=1) for map in feature_maps]
if self._multi_attention:
attention_mechanism = []
for i, feature_sequence in enumerate(feature_sequences):
memory = feature_sequence
attention_mechanism.append(_build_single_attention_mechanism(memory))
else:
memory = tf.concat(feature_sequences, axis=1)
attention_mechanism = _build_single_attention_mechanism(memory)
return attention_mechanism
示例3: build_attention_wrapper
# 需要导入模块: from tensorflow.contrib import seq2seq [as 别名]
# 或者: from tensorflow.contrib.seq2seq import tile_batch [as 别名]
def build_attention_wrapper(self, final_cell):
self.feedforward_inputs = tf.cond(
self.beam_search_decoding, lambda: seq2seq.tile_batch(
self.features["inputs"], multiplier=self.hparams.beam_width),
lambda: self.features["inputs"])
self.feedforward_inputs_length = tf.cond(
self.beam_search_decoding, lambda: seq2seq.tile_batch(
self.features["length"], multiplier=self.hparams.beam_width),
lambda: self.features["length"])
attention_mechanism = self.build_attention_mechanism()
return AttentionWrapper(
cell=final_cell,
attention_mechanism=attention_mechanism,
attention_layer_size=self.hparams.hidden_units,
cell_input_fn=self._attention_input_feeding,
initial_cell_state=self.initial_state[-1] if self.hparams.depth > 1 else self.initial_state)
示例4: build_rnn
# 需要导入模块: from tensorflow.contrib import seq2seq [as 别名]
# 或者: from tensorflow.contrib.seq2seq import tile_batch [as 别名]
def build_rnn(self):
self.initial_state = tf.cond(
self.beam_search_decoding, lambda: seq2seq.tile_batch(
self.features["state"], self.hparams.beam_width),
lambda: self.features["state"], name="initial_state")
self.build_embeddings()
cell_list = self.build_deep_cell(return_raw_list=True)
if self.hparams.use_attention:
cell_list[-1] = self.build_attention(cell_list[-1])
if self.hparams.depth > 1:
self.initial_state[-1] = final_cell.zero_state(batch_size=self.batch_size)
else:
self.initial_state = final_cell.zero_state(batch_size=self.batch_size)
with tf.name_scope('rnn_cell'):
self.cell = self.build_deep_cell(cell_list)
self.output_layer = Dense(self.vocab.size(), name='output_layer')
示例5: _get_beam_search_cell
# 需要导入模块: from tensorflow.contrib import seq2seq [as 别名]
# 或者: from tensorflow.contrib.seq2seq import tile_batch [as 别名]
def _get_beam_search_cell(self, beam_width):
"""Returns the RNN cell for beam search decoding.
"""
with tf.variable_scope(self.variable_scope, reuse=True):
attn_kwargs = copy.copy(self._attn_kwargs)
memory = attn_kwargs['memory']
attn_kwargs['memory'] = tile_batch(memory, multiplier=beam_width)
memory_seq_length = attn_kwargs['memory_sequence_length']
if memory_seq_length is not None:
attn_kwargs['memory_sequence_length'] = tile_batch(
memory_seq_length, beam_width)
attn_modules = ['tensorflow.contrib.seq2seq', 'texar.custom']
bs_attention_mechanism = utils.check_or_get_instance(
self._hparams.attention.type, attn_kwargs, attn_modules,
classtype=tf.contrib.seq2seq.AttentionMechanism)
bs_attn_cell = AttentionWrapper(
self._cell._cell,
bs_attention_mechanism,
cell_input_fn=self._cell_input_fn,
**self._attn_cell_kwargs)
self._beam_search_cell = bs_attn_cell
return bs_attn_cell
示例6: test_attention_decoder_given_initial_state
# 需要导入模块: from tensorflow.contrib import seq2seq [as 别名]
# 或者: from tensorflow.contrib.seq2seq import tile_batch [as 别名]
def test_attention_decoder_given_initial_state(self):
"""Tests beam search with RNNAttentionDecoder given initial state.
"""
seq_length = np.random.randint(
self._max_time, size=[self._batch_size]) + 1
encoder_values_length = tf.constant(seq_length)
hparams = {
"attention": {
"kwargs": {"num_units": self._attention_dim}
},
"rnn_cell": {
"kwargs": {"num_units": self._cell_dim}
}
}
decoder = tx.modules.AttentionRNNDecoder(
vocab_size=self._vocab_size,
memory=self._encoder_output,
memory_sequence_length=encoder_values_length,
hparams=hparams)
state = decoder.cell.zero_state(self._batch_size, tf.float32)
cell_state = state.cell_state
self._test_beam_search(decoder, initial_state=cell_state)
tiled_cell_state = tile_batch(cell_state, multiplier=self._beam_width)
self._test_beam_search(
decoder, tiled_initial_state=tiled_cell_state, initiated=True)
示例7: create_attention_mechanisms
# 需要导入模块: from tensorflow.contrib import seq2seq [as 别名]
# 或者: from tensorflow.contrib.seq2seq import tile_batch [as 别名]
def create_attention_mechanisms(num_units, attention_types, mode, dtype, beam_search=False, beam_width=None, memory=None, memory_len=None, fusion_type=None):
r"""
Creates a list of attention mechanisms (e.g. seq2seq.BahdanauAttention)
and also a list of ints holding the attention projection layer size
Args:
beam_search: `bool`, whether the beam-search decoding algorithm is used or not
"""
mechanisms = []
output_attention = None
if beam_search is True:
memory = seq2seq.tile_batch(
memory, multiplier=beam_width)
memory_len = seq2seq.tile_batch(
memory_len, multiplier=beam_width)
for attention_type in attention_types:
attention, output_attention = create_attention_mechanism(
num_units=num_units, # has to match decoder's state(query) size
memory=memory,
memory_sequence_length=memory_len,
attention_type=attention_type,
mode=mode,
dtype=dtype,
)
mechanisms.append(attention)
N = len(attention_types)
if fusion_type == 'deep_fusion':
attention_layer_sizes = None
attention_layers = [AttentionLayers(units=num_units, dtype=dtype) for _ in range(N)]
elif fusion_type == 'linear_fusion':
attention_layer_sizes = [num_units, ] * N
attention_layers = None
else:
raise Exception('Unknown fusion type')
return mechanisms, attention_layers, attention_layer_sizes, output_attention
示例8: _get_beam_search_cell
# 需要导入模块: from tensorflow.contrib import seq2seq [as 别名]
# 或者: from tensorflow.contrib.seq2seq import tile_batch [as 别名]
def _get_beam_search_cell(self, beam_width):
"""Returns the RNN cell for beam search decoding.
"""
with tf.variable_scope(self.variable_scope, reuse=True):
attn_kwargs = copy.copy(self._attn_kwargs)
memory = attn_kwargs['memory']
attn_kwargs['memory'] = tile_batch(memory, multiplier=beam_width)
memory_seq_length = attn_kwargs['memory_sequence_length']
if memory_seq_length is not None:
attn_kwargs['memory_sequence_length'] = tile_batch(
memory_seq_length, beam_width)
attn_modules = ['tensorflow.contrib.seq2seq', 'texar.tf.custom']
bs_attention_mechanism = utils.check_or_get_instance(
self._hparams.attention.type, attn_kwargs, attn_modules,
classtype=tf.contrib.seq2seq.AttentionMechanism)
bs_attn_cell = AttentionWrapper(
self._cell._cell,
bs_attention_mechanism,
cell_input_fn=self._cell_input_fn,
**self._attn_cell_kwargs)
self._beam_search_cell = bs_attn_cell
return bs_attn_cell
示例9: _make_decoder
# 需要导入模块: from tensorflow.contrib import seq2seq [as 别名]
# 或者: from tensorflow.contrib.seq2seq import tile_batch [as 别名]
def _make_decoder(self, encoder_outputs, encoder_final_state, beam_search=False, reuse=False):
"""Create decoder"""
with tf.variable_scope('decode', reuse=reuse):
# Create decoder cells
cells = [self._make_cell() for _ in range(self.depth)]
if beam_search:
# Tile inputs as needed for beam search
encoder_outputs = seq2seq.tile_batch(
encoder_outputs, multiplier=self.beam_width)
encoder_final_state = nest.map_structure(
lambda s: seq2seq.tile_batch(s, multiplier=self.beam_width),
encoder_final_state)
sequence_length = seq2seq.tile_batch(
self.sequence_length, multiplier=self.beam_width)
else:
sequence_length = self.sequence_length
# Prepare attention mechanism;
# add only to last cell
attention_mechanism = seq2seq.LuongAttention(
num_units=self.hidden_size, memory=encoder_outputs,
memory_sequence_length=sequence_length, name='attn')
cells[-1] = seq2seq.AttentionWrapper(
cells[-1], attention_mechanism, attention_layer_size=self.hidden_size,
initial_cell_state=encoder_final_state[-1],
cell_input_fn=lambda inp, attn: tf.layers.dense(tf.concat([inp, attn], -1), self.hidden_size),
name='attnwrap'
)
# Copy encoder final state as decoder initial state
decoder_initial_state = [s for s in encoder_final_state]
# Set last initial state to be AttentionWrapperState
batch_size = self.batch_size
if beam_search: batch_size = self.batch_size * self.beam_width
decoder_initial_state[-1] = cells[-1].zero_state(
dtype=tf.float32, batch_size=batch_size)
# Wrap up the cells
cell = rnn.MultiRNNCell(cells)
# Return initial state as a tuple
# (required by tensorflow)
return cell, tuple(decoder_initial_state)
示例10: _build_decoder_test_beam_search
# 需要导入模块: from tensorflow.contrib import seq2seq [as 别名]
# 或者: from tensorflow.contrib.seq2seq import tile_batch [as 别名]
def _build_decoder_test_beam_search(self):
r"""
Builds a beam search test decoder
"""
if self._hparams.enable_attention is True:
cells, initial_state = add_attention(
cells=self._decoder_cells,
attention_types=self._hparams.attention_type[1],
num_units=self._hparams.decoder_units_per_layer[-1],
memory=self._encoder_memory,
memory_len=self._encoder_features_len,
beam_search=True,
batch_size=self._batch_size,
beam_width=self._hparams.beam_width,
initial_state=self._decoder_initial_state,
mode=self._mode,
dtype=self._hparams.dtype,
fusion_type='linear_fusion',
write_attention_alignment=self._hparams.write_attention_alignment)
else: # does the non-attentive beam decoder need tile_batch ?
cells = self._decoder_cells
decoder_initial_state_tiled = seq2seq.tile_batch( # guess so ? it compiles without it too
self._decoder_initial_state, multiplier=self._hparams.beam_width)
initial_state = decoder_initial_state_tiled
self._decoder_inference = seq2seq.BeamSearchDecoder(
cell=cells,
embedding=self._embedding_matrix,
start_tokens=array_ops.fill([self._batch_size], self._GO_ID),
end_token=self._EOS_ID,
initial_state=initial_state,
beam_width=self._hparams.beam_width,
output_layer=self._dense_layer,
length_penalty_weight=0.6,
)
outputs, states, lengths = seq2seq.dynamic_decode(
self._decoder_inference,
impute_finished=False,
maximum_iterations=self._hparams.max_label_length,
swap_memory=False)
if self._hparams.write_attention_alignment is True:
self.attention_summary, self.attention_alignment = self._create_attention_alignments_summary(states)
self.inference_outputs = outputs.beam_search_decoder_output
self.inference_predicted_ids = outputs.predicted_ids[:, :, 0] # return the first beam
self.inference_predicted_beam = outputs.predicted_ids
self.beam_search_output = outputs.beam_search_decoder_output
示例11: add_attention
# 需要导入模块: from tensorflow.contrib import seq2seq [as 别名]
# 或者: from tensorflow.contrib.seq2seq import tile_batch [as 别名]
def add_attention(
cells,
attention_types,
num_units,
memory,
memory_len,
mode,
batch_size,
dtype,
beam_search=False,
beam_width=None,
initial_state=None,
write_attention_alignment=False,
fusion_type='linear_fusion',
):
r"""
Wraps the decoder_cells with an AttentionWrapper
Args:
cells: instances of `RNNCell`
beam_search: `bool` flag for beam search decoders
batch_size: `Tensor` containing the batch size. Necessary to the initialisation of the initial state
Returns:
attention_cells: the Attention wrapped decoder cells
initial_state: a proper initial state to be used with the returned cells
"""
attention_mechanisms, attention_layers, attention_layer_sizes, output_attention = create_attention_mechanisms(
beam_search=beam_search,
beam_width=beam_width,
memory=memory,
memory_len=memory_len,
num_units=num_units,
attention_types=attention_types,
fusion_type=fusion_type,
mode=mode,
dtype=dtype)
if beam_search is True:
initial_state= seq2seq.tile_batch(
initial_state, multiplier=beam_width)
attention_cells = seq2seq.AttentionWrapper(
cell=cells,
attention_mechanism=attention_mechanisms,
attention_layer_size=attention_layer_sizes,
# initial_cell_state=decoder_initial_state,
alignment_history=write_attention_alignment,
output_attention=output_attention,
attention_layer=attention_layers,
)
attn_zero = attention_cells.zero_state(
dtype=dtype,
batch_size=batch_size * beam_width if beam_search is True else batch_size)
if initial_state is not None:
initial_state = attn_zero.clone(
cell_state=initial_state)
return attention_cells, initial_state
示例12: _create_attention_mechanisms
# 需要导入模块: from tensorflow.contrib import seq2seq [as 别名]
# 或者: from tensorflow.contrib.seq2seq import tile_batch [as 别名]
def _create_attention_mechanisms(self, beam_search=False):
mechanisms = []
layer_sizes = []
if self._video_memory is not None:
if beam_search is True:
# TODO potentially broken, please re-check
self._video_memory = seq2seq.tile_batch(
self._video_memory, multiplier=self._hparams.beam_width)
self._video_features_len = seq2seq.tile_batch(
self._video_features_len, multiplier=self._hparams.beam_width)
for attention_type in self._hparams.attention_type[0]:
attention_video = self._create_attention_mechanism(
num_units=self._hparams.decoder_units_per_layer[-1],
memory=self._video_memory,
memory_sequence_length=self._video_features_len,
attention_type=attention_type
)
mechanisms.append(attention_video)
layer_sizes.append(self._hparams.decoder_units_per_layer[-1])
if self._audio_memory is not None:
if beam_search is True:
# TODO potentially broken, please re-check
self._audio_memory = seq2seq.tile_batch(
self._audio_memory, multiplier=self._hparams.beam_width)
self._audio_features_len = seq2seq.tile_batch(
self._audio_features_len, multiplier=self._hparams.beam_width)
for attention_type in self._hparams.attention_type[1]:
attention_audio = self._create_attention_mechanism(
num_units=self._hparams.decoder_units_per_layer[-1],
memory=self._audio_memory,
memory_sequence_length=self._audio_features_len,
attention_type=attention_type
)
mechanisms.append(attention_audio)
layer_sizes.append(self._hparams.decoder_units_per_layer[-1])
return mechanisms, layer_sizes
示例13: _build_decoder_beam_search
# 需要导入模块: from tensorflow.contrib import seq2seq [as 别名]
# 或者: from tensorflow.contrib.seq2seq import tile_batch [as 别名]
def _build_decoder_beam_search(self):
batch_size, _ = tf.unstack(tf.shape(self._labels))
attention_mechanisms, layer_sizes = self._create_attention_mechanisms(beam_search=True)
decoder_initial_state_tiled = seq2seq.tile_batch(
self._decoder_initial_state, multiplier=self._hparams.beam_width)
if self._hparams.enable_attention is True:
attention_cells = seq2seq.AttentionWrapper(
cell=self._decoder_cells,
attention_mechanism=attention_mechanisms,
attention_layer_size=layer_sizes,
initial_cell_state=decoder_initial_state_tiled,
alignment_history=self._hparams.write_attention_alignment,
output_attention=self._output_attention)
initial_state = attention_cells.zero_state(
dtype=self._hparams.dtype, batch_size=batch_size * self._hparams.beam_width)
initial_state = initial_state.clone(
cell_state=decoder_initial_state_tiled)
cells = attention_cells
else:
cells = self._decoder_cells
initial_state = decoder_initial_state_tiled
self._decoder_inference = seq2seq.BeamSearchDecoder(
cell=cells,
embedding=self._embedding_matrix,
start_tokens=array_ops.fill([batch_size], self._GO_ID),
end_token=self._EOS_ID,
initial_state=initial_state,
beam_width=self._hparams.beam_width,
output_layer=self._dense_layer,
length_penalty_weight=0.5,
)
outputs, states, lengths = seq2seq.dynamic_decode(
self._decoder_inference,
impute_finished=False,
maximum_iterations=self._hparams.max_label_length,
swap_memory=False)
if self._hparams.write_attention_alignment is True:
self.attention_summary = self._create_attention_alignments_summary(states)
self.inference_outputs = outputs.beam_search_decoder_output
self.inference_predicted_ids = outputs.predicted_ids[:, :, 0] # return the first beam
self.inference_predicted_beam = outputs.predicted_ids
self.beam_search_output = outputs.beam_search_decoder_output