本文整理汇总了Python中tensorflow.contrib.seq2seq.LuongAttention方法的典型用法代码示例。如果您正苦于以下问题:Python seq2seq.LuongAttention方法的具体用法?Python seq2seq.LuongAttention怎么用?Python seq2seq.LuongAttention使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.contrib.seq2seq
的用法示例。
在下文中一共展示了seq2seq.LuongAttention方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _create_cell
# 需要导入模块: from tensorflow.contrib import seq2seq [as 别名]
# 或者: from tensorflow.contrib.seq2seq import LuongAttention [as 别名]
def _create_cell(self, rnn_enc_tensor, src_len, hsz, pdrop, rnntype='lstm', layers=1, vdrop=False, **kwargs):
cell = multi_rnn_cell_w_dropout(hsz, pdrop, rnntype, layers, variational=vdrop, training=TRAIN_FLAG())
if self.beam_width > 1:
# Expand the encoded tensor for all beam entries
rnn_enc_tensor = tf.contrib.seq2seq.tile_batch(rnn_enc_tensor, multiplier=self.beam_width)
src_len = tf.contrib.seq2seq.tile_batch(src_len, multiplier=self.beam_width)
GlobalAttention = tfcontrib_seq2seq.LuongAttention if self.attn_type == 'luong' else tfcontrib_seq2seq.BahdanauAttention
attn_mech = GlobalAttention(hsz, rnn_enc_tensor, src_len)
return tf.contrib.seq2seq.AttentionWrapper(cell, attn_mech, self.hsz, name='dyn_attn_cell')
示例2: _create_decoder_cell
# 需要导入模块: from tensorflow.contrib import seq2seq [as 别名]
# 或者: from tensorflow.contrib.seq2seq import LuongAttention [as 别名]
def _create_decoder_cell(self):
enc_outputs, enc_states, enc_seq_len = self.enc_outputs, self.enc_states, self.enc_seq_len
batch_size = self.batch_size * self.cfg.beam_size if self.use_beam_search else self.batch_size
with tf.variable_scope("attention"):
if self.cfg.attention == "luong": # Luong attention mechanism
attention_mechanism = LuongAttention(num_units=self.cfg.num_units, memory=enc_outputs,
memory_sequence_length=enc_seq_len)
else: # default using Bahdanau attention mechanism
attention_mechanism = BahdanauAttention(num_units=self.cfg.num_units, memory=enc_outputs,
memory_sequence_length=enc_seq_len)
def cell_input_fn(inputs, attention): # define cell input function to keep input/output dimension same
# reference: https://www.tensorflow.org/api_docs/python/tf/contrib/seq2seq/AttentionWrapper
if not self.cfg.use_attention_input_feeding:
return inputs
input_project = tf.layers.Dense(self.cfg.num_units, dtype=tf.float32, name='attn_input_feeding')
return input_project(tf.concat([inputs, attention], axis=-1))
if self.cfg.top_attention: # apply attention mechanism only on the top decoder layer
cells = [self._create_rnn_cell() for _ in range(self.cfg.num_layers)]
cells[-1] = AttentionWrapper(cells[-1], attention_mechanism=attention_mechanism, name="Attention_Wrapper",
attention_layer_size=self.cfg.num_units, initial_cell_state=enc_states[-1],
cell_input_fn=cell_input_fn)
initial_state = [state for state in enc_states]
initial_state[-1] = cells[-1].zero_state(batch_size=batch_size, dtype=tf.float32)
dec_init_states = tuple(initial_state)
cells = MultiRNNCell(cells)
else:
cells = MultiRNNCell([self._create_rnn_cell() for _ in range(self.cfg.num_layers)])
cells = AttentionWrapper(cells, attention_mechanism=attention_mechanism, name="Attention_Wrapper",
attention_layer_size=self.cfg.num_units, initial_cell_state=enc_states,
cell_input_fn=cell_input_fn)
dec_init_states = cells.zero_state(batch_size=batch_size, dtype=tf.float32).clone(cell_state=enc_states)
return cells, dec_init_states
示例3: get
# 需要导入模块: from tensorflow.contrib import seq2seq [as 别名]
# 或者: from tensorflow.contrib.seq2seq import LuongAttention [as 别名]
def get(attention_type, num_units, memory, memory_sequence_length,
scope=None, reuse=None):
"""Returns attention mechanism according to the specified type."""
with tf.variable_scope(scope, reuse=reuse):
if attention_type == U.ATT_LUONG:
attention_mechanism = contrib_seq2seq.LuongAttention(
num_units=num_units,
memory=memory,
memory_sequence_length=memory_sequence_length)
elif attention_type == U.ATT_LUONG_SCALED:
attention_mechanism = contrib_seq2seq.LuongAttention(
num_units=num_units,
memory=memory,
memory_sequence_length=memory_sequence_length,
scale=True)
elif attention_type == U.ATT_BAHDANAU:
attention_mechanism = contrib_seq2seq.BahdanauAttention(
num_units=num_units,
memory=memory,
memory_sequence_length=memory_sequence_length)
elif attention_type == U.ATT_BAHDANAU_NORM:
attention_mechanism = contrib_seq2seq.BahdanauAttention(
num_units=num_units,
memory=memory,
memory_sequence_length=memory_sequence_length,
normalize=True)
else:
raise ValueError("Unknown attention type: %s" % attention_type)
return attention_mechanism
示例4: build_attention_mechanism
# 需要导入模块: from tensorflow.contrib import seq2seq [as 别名]
# 或者: from tensorflow.contrib.seq2seq import LuongAttention [as 别名]
def build_attention_mechanism(self):
if self.hparams.attention_type == 'luong':
attention_mechanism = seq2seq.LuongAttention(
self.hparams.hidden_units, self.feedforward_inputs, self.feedforward_inputs_length)
elif self.hparams.attention_type == 'bahdanau':
attention_mechanism = seq2seq.BahdanauAttention(
self.hparams.hidden_units, self.feedforward_inputs, self.feedforward_inputs_length,)
else:
raise ValueError(
"Currently, the only supported attention types are 'luong' and 'bahdanau'.")
示例5: _make_decoder
# 需要导入模块: from tensorflow.contrib import seq2seq [as 别名]
# 或者: from tensorflow.contrib.seq2seq import LuongAttention [as 别名]
def _make_decoder(self, encoder_outputs, encoder_final_state, beam_search=False, reuse=False):
"""Create decoder"""
with tf.variable_scope('decode', reuse=reuse):
# Create decoder cells
cells = [self._make_cell() for _ in range(self.depth)]
if beam_search:
# Tile inputs as needed for beam search
encoder_outputs = seq2seq.tile_batch(
encoder_outputs, multiplier=self.beam_width)
encoder_final_state = nest.map_structure(
lambda s: seq2seq.tile_batch(s, multiplier=self.beam_width),
encoder_final_state)
sequence_length = seq2seq.tile_batch(
self.sequence_length, multiplier=self.beam_width)
else:
sequence_length = self.sequence_length
# Prepare attention mechanism;
# add only to last cell
attention_mechanism = seq2seq.LuongAttention(
num_units=self.hidden_size, memory=encoder_outputs,
memory_sequence_length=sequence_length, name='attn')
cells[-1] = seq2seq.AttentionWrapper(
cells[-1], attention_mechanism, attention_layer_size=self.hidden_size,
initial_cell_state=encoder_final_state[-1],
cell_input_fn=lambda inp, attn: tf.layers.dense(tf.concat([inp, attn], -1), self.hidden_size),
name='attnwrap'
)
# Copy encoder final state as decoder initial state
decoder_initial_state = [s for s in encoder_final_state]
# Set last initial state to be AttentionWrapperState
batch_size = self.batch_size
if beam_search: batch_size = self.batch_size * self.beam_width
decoder_initial_state[-1] = cells[-1].zero_state(
dtype=tf.float32, batch_size=batch_size)
# Wrap up the cells
cell = rnn.MultiRNNCell(cells)
# Return initial state as a tuple
# (required by tensorflow)
return cell, tuple(decoder_initial_state)