本文整理汇总了Python中tensorflow.contrib.seq2seq.BeamSearchDecoder方法的典型用法代码示例。如果您正苦于以下问题:Python seq2seq.BeamSearchDecoder方法的具体用法?Python seq2seq.BeamSearchDecoder怎么用?Python seq2seq.BeamSearchDecoder使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.contrib.seq2seq
的用法示例。
在下文中一共展示了seq2seq.BeamSearchDecoder方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _make_predict
# 需要导入模块: from tensorflow.contrib import seq2seq [as 别名]
# 或者: from tensorflow.contrib.seq2seq import BeamSearchDecoder [as 别名]
def _make_predict(self, decoder_cell, decoder_initial_state):
# Access embeddings directly
with tf.variable_scope('embed', reuse=True):
embeddings = tf.get_variable('embeddings')
# Assume 0 is the START token
start_tokens = tf.zeros((self.batch_size,), dtype=tf.int32)
# For predictions, we use beam search to return multiple results
with tf.variable_scope('decode', reuse=True):
# Project to correct dimensions
out_proj = tf.layers.Dense(self.vocab_size, name='output_proj')
embeddings = tf.layers.dense(embeddings, self.hidden_size, name='input_proj')
decoder = seq2seq.BeamSearchDecoder(
cell=decoder_cell,
embedding=embeddings,
start_tokens=start_tokens,
end_token=END,
initial_state=decoder_initial_state,
beam_width=self.beam_width,
output_layer=out_proj
)
final_outputs, final_state, final_sequence_lengths = seq2seq.dynamic_decode(
decoder=decoder, impute_finished=False, maximum_iterations=self.max_decode_iter)
# Swap axes for an order that makes more sense (to me)
# such that we have [batch_size, beam_width, T], i.e.
# each row is a output sequence
return tf.transpose(final_outputs.predicted_ids, [0,2,1])
示例2: _build_decoder
# 需要导入模块: from tensorflow.contrib import seq2seq [as 别名]
# 或者: from tensorflow.contrib.seq2seq import BeamSearchDecoder [as 别名]
def _build_decoder(self, decoder_cell, batch_size):
embedding_fn = functools.partial(tf.one_hot, depth=self.num_classes)
output_layer = tf.layers.Dense(
self.num_classes,
activation=None,
use_bias=True,
kernel_initializer=tf.variance_scaling_initializer(),
bias_initializer=tf.zeros_initializer())
if self._is_training:
train_helper = seq2seq.TrainingHelper(
embedding_fn(self._groundtruth_dict['decoder_inputs']),
sequence_length=self._groundtruth_dict['decoder_lengths'],
time_major=False)
decoder = seq2seq.BasicDecoder(
cell=decoder_cell,
helper=train_helper,
initial_state=decoder_cell.zero_state(batch_size, tf.float32),
output_layer=output_layer)
else:
decoder = seq2seq.BeamSearchDecoder(
cell=decoder_cell,
embedding=embedding_fn,
start_tokens=tf.fill([batch_size], self.start_label),
end_token=self.end_label,
initial_state=decoder_cell.zero_state(batch_size * self._beam_width, tf.float32),
beam_width=self._beam_width,
output_layer=output_layer,
length_penalty_weight=0.0)
return decoder
示例3: _build_decoder_test_beam_search
# 需要导入模块: from tensorflow.contrib import seq2seq [as 别名]
# 或者: from tensorflow.contrib.seq2seq import BeamSearchDecoder [as 别名]
def _build_decoder_test_beam_search(self):
r"""
Builds a beam search test decoder
"""
if self._hparams.enable_attention is True:
cells, initial_state = add_attention(
cells=self._decoder_cells,
attention_types=self._hparams.attention_type[1],
num_units=self._hparams.decoder_units_per_layer[-1],
memory=self._encoder_memory,
memory_len=self._encoder_features_len,
beam_search=True,
batch_size=self._batch_size,
beam_width=self._hparams.beam_width,
initial_state=self._decoder_initial_state,
mode=self._mode,
dtype=self._hparams.dtype,
fusion_type='linear_fusion',
write_attention_alignment=self._hparams.write_attention_alignment)
else: # does the non-attentive beam decoder need tile_batch ?
cells = self._decoder_cells
decoder_initial_state_tiled = seq2seq.tile_batch( # guess so ? it compiles without it too
self._decoder_initial_state, multiplier=self._hparams.beam_width)
initial_state = decoder_initial_state_tiled
self._decoder_inference = seq2seq.BeamSearchDecoder(
cell=cells,
embedding=self._embedding_matrix,
start_tokens=array_ops.fill([self._batch_size], self._GO_ID),
end_token=self._EOS_ID,
initial_state=initial_state,
beam_width=self._hparams.beam_width,
output_layer=self._dense_layer,
length_penalty_weight=0.6,
)
outputs, states, lengths = seq2seq.dynamic_decode(
self._decoder_inference,
impute_finished=False,
maximum_iterations=self._hparams.max_label_length,
swap_memory=False)
if self._hparams.write_attention_alignment is True:
self.attention_summary, self.attention_alignment = self._create_attention_alignments_summary(states)
self.inference_outputs = outputs.beam_search_decoder_output
self.inference_predicted_ids = outputs.predicted_ids[:, :, 0] # return the first beam
self.inference_predicted_beam = outputs.predicted_ids
self.beam_search_output = outputs.beam_search_decoder_output
示例4: _build_decoder_beam_search
# 需要导入模块: from tensorflow.contrib import seq2seq [as 别名]
# 或者: from tensorflow.contrib.seq2seq import BeamSearchDecoder [as 别名]
def _build_decoder_beam_search(self):
batch_size, _ = tf.unstack(tf.shape(self._labels))
attention_mechanisms, layer_sizes = self._create_attention_mechanisms(beam_search=True)
decoder_initial_state_tiled = seq2seq.tile_batch(
self._decoder_initial_state, multiplier=self._hparams.beam_width)
if self._hparams.enable_attention is True:
attention_cells = seq2seq.AttentionWrapper(
cell=self._decoder_cells,
attention_mechanism=attention_mechanisms,
attention_layer_size=layer_sizes,
initial_cell_state=decoder_initial_state_tiled,
alignment_history=self._hparams.write_attention_alignment,
output_attention=self._output_attention)
initial_state = attention_cells.zero_state(
dtype=self._hparams.dtype, batch_size=batch_size * self._hparams.beam_width)
initial_state = initial_state.clone(
cell_state=decoder_initial_state_tiled)
cells = attention_cells
else:
cells = self._decoder_cells
initial_state = decoder_initial_state_tiled
self._decoder_inference = seq2seq.BeamSearchDecoder(
cell=cells,
embedding=self._embedding_matrix,
start_tokens=array_ops.fill([batch_size], self._GO_ID),
end_token=self._EOS_ID,
initial_state=initial_state,
beam_width=self._hparams.beam_width,
output_layer=self._dense_layer,
length_penalty_weight=0.5,
)
outputs, states, lengths = seq2seq.dynamic_decode(
self._decoder_inference,
impute_finished=False,
maximum_iterations=self._hparams.max_label_length,
swap_memory=False)
if self._hparams.write_attention_alignment is True:
self.attention_summary = self._create_attention_alignments_summary(states)
self.inference_outputs = outputs.beam_search_decoder_output
self.inference_predicted_ids = outputs.predicted_ids[:, :, 0] # return the first beam
self.inference_predicted_beam = outputs.predicted_ids
self.beam_search_output = outputs.beam_search_decoder_output