本文整理汇总了Python中tensorflow.contrib.seq2seq.AttentionWrapper方法的典型用法代码示例。如果您正苦于以下问题:Python seq2seq.AttentionWrapper方法的具体用法?Python seq2seq.AttentionWrapper怎么用?Python seq2seq.AttentionWrapper使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.contrib.seq2seq
的用法示例。
在下文中一共展示了seq2seq.AttentionWrapper方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: build_attention_wrapper
# 需要导入模块: from tensorflow.contrib import seq2seq [as 别名]
# 或者: from tensorflow.contrib.seq2seq import AttentionWrapper [as 别名]
def build_attention_wrapper(self, final_cell):
self.feedforward_inputs = tf.cond(
self.beam_search_decoding, lambda: seq2seq.tile_batch(
self.features["inputs"], multiplier=self.hparams.beam_width),
lambda: self.features["inputs"])
self.feedforward_inputs_length = tf.cond(
self.beam_search_decoding, lambda: seq2seq.tile_batch(
self.features["length"], multiplier=self.hparams.beam_width),
lambda: self.features["length"])
attention_mechanism = self.build_attention_mechanism()
return AttentionWrapper(
cell=final_cell,
attention_mechanism=attention_mechanism,
attention_layer_size=self.hparams.hidden_units,
cell_input_fn=self._attention_input_feeding,
initial_cell_state=self.initial_state[-1] if self.hparams.depth > 1 else self.initial_state)
示例2: _get_beam_search_cell
# 需要导入模块: from tensorflow.contrib import seq2seq [as 别名]
# 或者: from tensorflow.contrib.seq2seq import AttentionWrapper [as 别名]
def _get_beam_search_cell(self, beam_width):
"""Returns the RNN cell for beam search decoding.
"""
with tf.variable_scope(self.variable_scope, reuse=True):
attn_kwargs = copy.copy(self._attn_kwargs)
memory = attn_kwargs['memory']
attn_kwargs['memory'] = tile_batch(memory, multiplier=beam_width)
memory_seq_length = attn_kwargs['memory_sequence_length']
if memory_seq_length is not None:
attn_kwargs['memory_sequence_length'] = tile_batch(
memory_seq_length, beam_width)
attn_modules = ['tensorflow.contrib.seq2seq', 'texar.custom']
bs_attention_mechanism = utils.check_or_get_instance(
self._hparams.attention.type, attn_kwargs, attn_modules,
classtype=tf.contrib.seq2seq.AttentionMechanism)
bs_attn_cell = AttentionWrapper(
self._cell._cell,
bs_attention_mechanism,
cell_input_fn=self._cell_input_fn,
**self._attn_cell_kwargs)
self._beam_search_cell = bs_attn_cell
return bs_attn_cell
示例3: _alignments_size
# 需要导入模块: from tensorflow.contrib import seq2seq [as 别名]
# 或者: from tensorflow.contrib.seq2seq import AttentionWrapper [as 别名]
def _alignments_size(self):
# Reimplementation of the alignments_size of each of
# AttentionWrapper.attention_mechanisms. The original implementation
# of `_BaseAttentionMechanism._alignments_size`:
#
# self._alignments_size = (self._keys.shape[1].value or
# array_ops.shape(self._keys)[1])
#
# can be `None` when the seq length of encoder outputs are priori
# unknown.
alignments_size = []
for am in self._cell._attention_mechanisms:
az = (am._keys.shape[1].value or tf.shape(am._keys)[1:-1])
alignments_size.append(az)
return self._cell._item_or_tuple(alignments_size)
示例4: zero_state
# 需要导入模块: from tensorflow.contrib import seq2seq [as 别名]
# 或者: from tensorflow.contrib.seq2seq import AttentionWrapper [as 别名]
def zero_state(self, batch_size, dtype):
with tf.name_scope(type(self).__name__ + "ZeroState", values=[batch_size]):
if self._initial_cell_state is not None:
cell_state = self._initial_cell_state
else:
cell_state = self._cell.zero_state(batch_size, dtype)
error_message = (
"zero_state of AttentionWrapper %s: " % self._base_name +
"Non-matching batch sizes between the memory "
"(encoder output) and the requested batch size.")
with tf.control_dependencies(
[tf.assert_equal(batch_size,
self._attention_mechanism.batch_size,
message=error_message)]):
cell_state = nest.map_structure(
lambda s: tf.identity(s, name="checked_cell_state"),
cell_state)
alignment_history = ()
_zero_state_tensors = rnn_cell_impl._zero_state_tensors
return AttentionWrapperState(
cell_state=cell_state,
time=tf.zeros([], dtype=tf.int32),
attention=_zero_state_tensors(self._attention_size, batch_size,
dtype),
alignments=self._attention_mechanism.initial_alignments(
batch_size, dtype),
alignment_history=alignment_history)
示例5: _create_decoder_cell
# 需要导入模块: from tensorflow.contrib import seq2seq [as 别名]
# 或者: from tensorflow.contrib.seq2seq import AttentionWrapper [as 别名]
def _create_decoder_cell(self):
enc_outputs, enc_states, enc_seq_len = self.enc_outputs, self.enc_states, self.enc_seq_len
batch_size = self.batch_size * self.cfg.beam_size if self.use_beam_search else self.batch_size
with tf.variable_scope("attention"):
if self.cfg.attention == "luong": # Luong attention mechanism
attention_mechanism = LuongAttention(num_units=self.cfg.num_units, memory=enc_outputs,
memory_sequence_length=enc_seq_len)
else: # default using Bahdanau attention mechanism
attention_mechanism = BahdanauAttention(num_units=self.cfg.num_units, memory=enc_outputs,
memory_sequence_length=enc_seq_len)
def cell_input_fn(inputs, attention): # define cell input function to keep input/output dimension same
# reference: https://www.tensorflow.org/api_docs/python/tf/contrib/seq2seq/AttentionWrapper
if not self.cfg.use_attention_input_feeding:
return inputs
input_project = tf.layers.Dense(self.cfg.num_units, dtype=tf.float32, name='attn_input_feeding')
return input_project(tf.concat([inputs, attention], axis=-1))
if self.cfg.top_attention: # apply attention mechanism only on the top decoder layer
cells = [self._create_rnn_cell() for _ in range(self.cfg.num_layers)]
cells[-1] = AttentionWrapper(cells[-1], attention_mechanism=attention_mechanism, name="Attention_Wrapper",
attention_layer_size=self.cfg.num_units, initial_cell_state=enc_states[-1],
cell_input_fn=cell_input_fn)
initial_state = [state for state in enc_states]
initial_state[-1] = cells[-1].zero_state(batch_size=batch_size, dtype=tf.float32)
dec_init_states = tuple(initial_state)
cells = MultiRNNCell(cells)
else:
cells = MultiRNNCell([self._create_rnn_cell() for _ in range(self.cfg.num_layers)])
cells = AttentionWrapper(cells, attention_mechanism=attention_mechanism, name="Attention_Wrapper",
attention_layer_size=self.cfg.num_units, initial_cell_state=enc_states,
cell_input_fn=cell_input_fn)
dec_init_states = cells.zero_state(batch_size=batch_size, dtype=tf.float32).clone(cell_state=enc_states)
return cells, dec_init_states
示例6: _build_decoder_cell
# 需要导入模块: from tensorflow.contrib import seq2seq [as 别名]
# 或者: from tensorflow.contrib.seq2seq import AttentionWrapper [as 别名]
def _build_decoder_cell(self, feature_maps):
attention_mechanism = self._build_attention_mechanism(feature_maps)
wrapper_class = seq2seq.AttentionWrapper if not self._sync else sync_attention_wrapper.SyncAttentionWrapper
attention_cell = wrapper_class(
self._rnn_cell,
attention_mechanism,
output_attention=False)
if not self._lm_rnn_cell:
decoder_cell = attention_cell
else:
decoder_cell = ConcatOutputMultiRNNCell([attention_cell, self._lm_rnn_cell])
return decoder_cell
示例7: __init__
# 需要导入模块: from tensorflow.contrib import seq2seq [as 别名]
# 或者: from tensorflow.contrib.seq2seq import AttentionWrapper [as 别名]
def __init__(self, cell, prenets: Tuple[PreNet],
attention_mechanism,
trainable=True, name=None, dtype=None, **kwargs):
super(AttentionRNN, self).__init__(trainable=trainable, name=name, dtype=dtype, **kwargs)
attention_cell = AttentionWrapper(
cell,
attention_mechanism,
alignment_history=True,
output_attention=False)
# prenet -> attention
prenet_cell = DecoderPreNetWrapper(attention_cell, prenets)
# prenet -> attention -> concat
concat_cell = ConcatOutputAndAttentionWrapper(prenet_cell)
self._cell = concat_cell
示例8: __init__
# 需要导入模块: from tensorflow.contrib import seq2seq [as 别名]
# 或者: from tensorflow.contrib.seq2seq import AttentionWrapper [as 别名]
def __init__(self, attention_cell, cells, use_new_attention=False):
"""Creates a GNMTAttentionMultiCell.
Args:
attention_cell: An instance of AttentionWrapper.
cells: A list of RNNCell wrapped with AttentionInputWrapper.
use_new_attention: Whether to use the attention generated from current
step bottom layer's output. Default is False.
"""
cells = [attention_cell] + cells
self.use_new_attention = use_new_attention
super(GNMTAttentionMultiCell, self).__init__(cells, state_is_tuple=True)
示例9: _get_beam_search_cell
# 需要导入模块: from tensorflow.contrib import seq2seq [as 别名]
# 或者: from tensorflow.contrib.seq2seq import AttentionWrapper [as 别名]
def _get_beam_search_cell(self, beam_width):
"""Returns the RNN cell for beam search decoding.
"""
with tf.variable_scope(self.variable_scope, reuse=True):
attn_kwargs = copy.copy(self._attn_kwargs)
memory = attn_kwargs['memory']
attn_kwargs['memory'] = tile_batch(memory, multiplier=beam_width)
memory_seq_length = attn_kwargs['memory_sequence_length']
if memory_seq_length is not None:
attn_kwargs['memory_sequence_length'] = tile_batch(
memory_seq_length, beam_width)
attn_modules = ['tensorflow.contrib.seq2seq', 'texar.tf.custom']
bs_attention_mechanism = utils.check_or_get_instance(
self._hparams.attention.type, attn_kwargs, attn_modules,
classtype=tf.contrib.seq2seq.AttentionMechanism)
bs_attn_cell = AttentionWrapper(
self._cell._cell,
bs_attention_mechanism,
cell_input_fn=self._cell_input_fn,
**self._attn_cell_kwargs)
self._beam_search_cell = bs_attn_cell
return bs_attn_cell
示例10: __init__
# 需要导入模块: from tensorflow.contrib import seq2seq [as 别名]
# 或者: from tensorflow.contrib.seq2seq import AttentionWrapper [as 别名]
def __init__(self, cell, prenets: Tuple[PreNet],
attention_mechanism1,
attention_mechanism2,
trainable=True, name=None, **kwargs):
super(DualSourceAttentionRNN, self).__init__(name=name, trainable=trainable, **kwargs)
attention_cell = AttentionWrapper(
cell,
[attention_mechanism1, attention_mechanism2],
alignment_history=True,
output_attention=False)
prenet_cell = DecoderPreNetWrapper(attention_cell, prenets)
concat_cell = ConcatOutputAndAttentionWrapper(prenet_cell)
self._cell = concat_cell
示例11: __init__
# 需要导入模块: from tensorflow.contrib import seq2seq [as 别名]
# 或者: from tensorflow.contrib.seq2seq import AttentionWrapper [as 别名]
def __init__(self,
memory,
memory_sequence_length=None,
cell=None,
cell_dropout_mode=None,
vocab_size=None,
output_layer=None,
#attention_layer=None, # TODO(zhiting): only valid for tf>=1.0
cell_input_fn=None,
hparams=None):
RNNDecoderBase.__init__(
self, cell, vocab_size, output_layer, cell_dropout_mode, hparams)
attn_hparams = self._hparams['attention']
attn_kwargs = attn_hparams['kwargs'].todict()
# Parse the 'probability_fn' argument
if 'probability_fn' in attn_kwargs:
prob_fn = attn_kwargs['probability_fn']
if prob_fn is not None and not callable(prob_fn):
prob_fn = utils.get_function(
prob_fn,
['tensorflow.nn', 'tensorflow.contrib.sparsemax',
'tensorflow.contrib.seq2seq'])
attn_kwargs['probability_fn'] = prob_fn
attn_kwargs.update({
"memory_sequence_length": memory_sequence_length,
"memory": memory})
self._attn_kwargs = attn_kwargs
attn_modules = ['tensorflow.contrib.seq2seq', 'texar.custom']
# Use variable_scope to ensure all trainable variables created in
# the attention mechanism are collected
with tf.variable_scope(self.variable_scope):
attention_mechanism = utils.check_or_get_instance(
attn_hparams["type"], attn_kwargs, attn_modules,
classtype=tf.contrib.seq2seq.AttentionMechanism)
self._attn_cell_kwargs = {
"attention_layer_size": attn_hparams["attention_layer_size"],
"alignment_history": attn_hparams["alignment_history"],
"output_attention": attn_hparams["output_attention"],
}
self._cell_input_fn = cell_input_fn
# Use variable_scope to ensure all trainable variables created in
# AttentionWrapper are collected
with tf.variable_scope(self.variable_scope):
#if attention_layer is not None:
# self._attn_cell_kwargs["attention_layer_size"] = None
attn_cell = AttentionWrapper(
self._cell,
attention_mechanism,
cell_input_fn=self._cell_input_fn,
#attention_layer=attention_layer,
**self._attn_cell_kwargs)
self._cell = attn_cell
示例12: __init__
# 需要导入模块: from tensorflow.contrib import seq2seq [as 别名]
# 或者: from tensorflow.contrib.seq2seq import AttentionWrapper [as 别名]
def __init__(self,
cell,
attention_mechanism,
initial_cell_state=None,
name=None):
"""Construct the wrapper.
Main tweak is creating the attention_layer with a tanh activation
(Luong's choice) as opposed to linear (TensorFlow's choice). Also,
since I am sticking with Luong's approach, parameters that are in the
constructor of TensorFlow's AttentionWrapper have been removed, and
the corresponding values are set to how Luong's paper defined them.
Args:
cell: instance of the Cell class above.
attention_mechanism: instance of tf AttentionMechanism.
initial_cell_state: The initial state value to use for the cell when
the user calls `zero_state()`.
name: Name to use when creating ops.
"""
super(SimpleAttentionWrapper, self).__init__(name=name)
# Assume that 'cell' is an instance of the custom 'Cell' class above.
self._base_cell = cell._base_cell
self._num_layers = cell._num_layers
self._state_size = cell._state_size
self._attention_size = attention_mechanism.values.get_shape()[-1].value
self._attention_layer = layers_core.Dense(self._attention_size,
activation=tf.nn.tanh,
name="attention_layer",
use_bias=False)
self._cell = cell
self._attention_mechanism = attention_mechanism
with tf.name_scope(name, "AttentionWrapperInit"):
if initial_cell_state is None:
self._initial_cell_state = None
else:
final_state_tensor = nest.flatten(initial_cell_state)[-1]
state_batch_size = (
final_state_tensor.shape[0].value
or tf.shape(final_state_tensor)[0])
error_message = (
"Constructor AttentionWrapper %s: " % self._base_name +
"Non-matching batch sizes between the memory "
"(encoder output) and initial_cell_state.")
with tf.control_dependencies(
[tf.assert_equal(state_batch_size,
self._attention_mechanism.batch_size,
message=error_message)]):
self._initial_cell_state = nest.map_structure(
lambda s: tf.identity(s, name="check_initial_cell_state"),
initial_cell_state)
示例13: _make_decoder
# 需要导入模块: from tensorflow.contrib import seq2seq [as 别名]
# 或者: from tensorflow.contrib.seq2seq import AttentionWrapper [as 别名]
def _make_decoder(self, encoder_outputs, encoder_final_state, beam_search=False, reuse=False):
"""Create decoder"""
with tf.variable_scope('decode', reuse=reuse):
# Create decoder cells
cells = [self._make_cell() for _ in range(self.depth)]
if beam_search:
# Tile inputs as needed for beam search
encoder_outputs = seq2seq.tile_batch(
encoder_outputs, multiplier=self.beam_width)
encoder_final_state = nest.map_structure(
lambda s: seq2seq.tile_batch(s, multiplier=self.beam_width),
encoder_final_state)
sequence_length = seq2seq.tile_batch(
self.sequence_length, multiplier=self.beam_width)
else:
sequence_length = self.sequence_length
# Prepare attention mechanism;
# add only to last cell
attention_mechanism = seq2seq.LuongAttention(
num_units=self.hidden_size, memory=encoder_outputs,
memory_sequence_length=sequence_length, name='attn')
cells[-1] = seq2seq.AttentionWrapper(
cells[-1], attention_mechanism, attention_layer_size=self.hidden_size,
initial_cell_state=encoder_final_state[-1],
cell_input_fn=lambda inp, attn: tf.layers.dense(tf.concat([inp, attn], -1), self.hidden_size),
name='attnwrap'
)
# Copy encoder final state as decoder initial state
decoder_initial_state = [s for s in encoder_final_state]
# Set last initial state to be AttentionWrapperState
batch_size = self.batch_size
if beam_search: batch_size = self.batch_size * self.beam_width
decoder_initial_state[-1] = cells[-1].zero_state(
dtype=tf.float32, batch_size=batch_size)
# Wrap up the cells
cell = rnn.MultiRNNCell(cells)
# Return initial state as a tuple
# (required by tensorflow)
return cell, tuple(decoder_initial_state)
示例14: add_attention
# 需要导入模块: from tensorflow.contrib import seq2seq [as 别名]
# 或者: from tensorflow.contrib.seq2seq import AttentionWrapper [as 别名]
def add_attention(
cells,
attention_types,
num_units,
memory,
memory_len,
mode,
batch_size,
dtype,
beam_search=False,
beam_width=None,
initial_state=None,
write_attention_alignment=False,
fusion_type='linear_fusion',
):
r"""
Wraps the decoder_cells with an AttentionWrapper
Args:
cells: instances of `RNNCell`
beam_search: `bool` flag for beam search decoders
batch_size: `Tensor` containing the batch size. Necessary to the initialisation of the initial state
Returns:
attention_cells: the Attention wrapped decoder cells
initial_state: a proper initial state to be used with the returned cells
"""
attention_mechanisms, attention_layers, attention_layer_sizes, output_attention = create_attention_mechanisms(
beam_search=beam_search,
beam_width=beam_width,
memory=memory,
memory_len=memory_len,
num_units=num_units,
attention_types=attention_types,
fusion_type=fusion_type,
mode=mode,
dtype=dtype)
if beam_search is True:
initial_state= seq2seq.tile_batch(
initial_state, multiplier=beam_width)
attention_cells = seq2seq.AttentionWrapper(
cell=cells,
attention_mechanism=attention_mechanisms,
attention_layer_size=attention_layer_sizes,
# initial_cell_state=decoder_initial_state,
alignment_history=write_attention_alignment,
output_attention=output_attention,
attention_layer=attention_layers,
)
attn_zero = attention_cells.zero_state(
dtype=dtype,
batch_size=batch_size * beam_width if beam_search is True else batch_size)
if initial_state is not None:
initial_state = attn_zero.clone(
cell_state=initial_state)
return attention_cells, initial_state
示例15: _build_decoder_train
# 需要导入模块: from tensorflow.contrib import seq2seq [as 别名]
# 或者: from tensorflow.contrib.seq2seq import AttentionWrapper [as 别名]
def _build_decoder_train(self):
self._labels_embedded = tf.nn.embedding_lookup(self._embedding_matrix, self._labels_padded_GO)
self._helper_train = seq2seq.ScheduledEmbeddingTrainingHelper(
inputs=self._labels_embedded,
sequence_length=self._labels_len,
embedding=self._embedding_matrix,
sampling_probability=self._sampling_probability_outputs,
)
if self._hparams.enable_attention is True:
attention_mechanisms, layer_sizes = self._create_attention_mechanisms()
attention_cells = seq2seq.AttentionWrapper(
cell=self._decoder_cells,
attention_mechanism=attention_mechanisms,
attention_layer_size=layer_sizes,
initial_cell_state=self._decoder_initial_state,
alignment_history=False,
output_attention=self._output_attention,
)
batch_size, _ = tf.unstack(tf.shape(self._labels))
attn_zero = attention_cells.zero_state(
dtype=self._hparams.dtype, batch_size=batch_size
)
initial_state = attn_zero.clone(
cell_state=self._decoder_initial_state
)
cells = attention_cells
else:
cells = self._decoder_cells
initial_state = self._decoder_initial_state
self._decoder_train = seq2seq.BasicDecoder(
cell=cells,
helper=self._helper_train,
initial_state=initial_state,
output_layer=self._dense_layer,
)
self._basic_decoder_train_outputs, self._final_states, self._final_seq_lens = seq2seq.dynamic_decode(
self._decoder_train,
output_time_major=False,
impute_finished=True,
swap_memory=False,
)
self._logits = self._basic_decoder_train_outputs.rnn_output