本文整理汇总了Python中tensorflow.contrib.rnn.static_rnn方法的典型用法代码示例。如果您正苦于以下问题:Python rnn.static_rnn方法的具体用法?Python rnn.static_rnn怎么用?Python rnn.static_rnn使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.contrib.rnn
的用法示例。
在下文中一共展示了rnn.static_rnn方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: RNN
# 需要导入模块: from tensorflow.contrib import rnn [as 别名]
# 或者: from tensorflow.contrib.rnn import static_rnn [as 别名]
def RNN(x, weights, biases):
# reshape to [1, n_input]
x = tf.reshape(x, [-1, n_input])
# Generate a n_input-element sequence of inputs
# (eg. [had] [a] [general] -> [20] [6] [33])
x = tf.split(x, n_input, 1)
# 2-layer LSTM, each layer has n_hidden units.
# Average Accuracy= 95.20% at 50k iter
rnn_cell = rnn.MultiRNNCell([rnn.BasicLSTMCell(n_hidden), rnn.BasicLSTMCell(n_hidden)])
# 1-layer LSTM with n_hidden units but with lower accuracy.
# Average Accuracy= 90.60% 50k iter
# Uncomment line below to test but comment out the 2-layer rnn.MultiRNNCell above
# rnn_cell = rnn.BasicLSTMCell(n_hidden)
# generate prediction
outputs, states = rnn.static_rnn(rnn_cell, x, dtype=tf.float32)
# there are n_input outputs but
# we only want the last output
return tf.matmul(outputs[-1], weights['out']) + biases['out']
示例2: rnn_seq2seq
# 需要导入模块: from tensorflow.contrib import rnn [as 别名]
# 或者: from tensorflow.contrib.rnn import static_rnn [as 别名]
def rnn_seq2seq(encoder_inputs,
decoder_inputs,
encoder_cell,
decoder_cell=None,
dtype=dtypes.float32,
scope=None):
"""RNN Sequence to Sequence model.
Args:
encoder_inputs: List of tensors, inputs for encoder.
decoder_inputs: List of tensors, inputs for decoder.
encoder_cell: RNN cell to use for encoder.
decoder_cell: RNN cell to use for decoder, if None encoder_cell is used.
dtype: Type to initialize encoder state with.
scope: Scope to use, if None new will be produced.
Returns:
List of tensors for outputs and states for trianing and sampling sub-graphs.
"""
with vs.variable_scope(scope or "rnn_seq2seq"):
_, last_enc_state = rnn.static_rnn(
encoder_cell, encoder_inputs, dtype=dtype)
return rnn_decoder(decoder_inputs, last_enc_state, decoder_cell or
encoder_cell)
示例3: RNN
# 需要导入模块: from tensorflow.contrib import rnn [as 别名]
# 或者: from tensorflow.contrib.rnn import static_rnn [as 别名]
def RNN(x, weights, biases):
# Prepare data shape to match `rnn` function requirements
# Current data input shape: (batch_size, timesteps, n_input)
# Required shape: 'timesteps' tensors list of shape (batch_size, n_input)
# Unstack to get a list of 'timesteps' tensors of shape (batch_size, n_input)
with tf.name_scope('RNN'):
x = tf.unstack(x, timesteps, 1)
variable_summaries(x)
# Define a lstm cell with tensorflow
lstm_cell = rnn.BasicLSTMCell(num_hidden, forget_bias=1.0)
#variable_summaries(lstm_cell)
# Get lstm cell output
outputs, states = rnn.static_rnn(lstm_cell, x, dtype=tf.float32)
#variable_summaries(outputs)
#variable_summaries(states)
# Linear activation, using rnn inner loop last output
return tf.matmul(outputs[-1], weights['out']) + biases['out']
示例4: LSTMs
# 需要导入模块: from tensorflow.contrib import rnn [as 别名]
# 或者: from tensorflow.contrib.rnn import static_rnn [as 别名]
def LSTMs(x, weights, biases, timesteps , num_hidden):
# Prepare data shape to match `rnn` function requirements
# Current data input shape: (batch_size, timesteps, n_input)
# Required shape: 'timesteps' tensors list of shape (batch_size, n_input)
# Unstack to get a list of 'timesteps' tensors of shape (batch_size, n_input)
x = tf.unstack(x, timesteps, 1)
# Define a lstm cell with tensorflow
lstm_cell = rnn.BasicLSTMCell(num_hidden, forget_bias=1.0)
# Get lstm cell output
outputs, states = rnn.static_rnn(lstm_cell, x, dtype=tf.float32)
# Linear activation, using rnn inner loop last output
return tf.matmul(outputs[-1], weights['out']) + biases['out']
示例5: RNN
# 需要导入模块: from tensorflow.contrib import rnn [as 别名]
# 或者: from tensorflow.contrib.rnn import static_rnn [as 别名]
def RNN(x, weights, biases, timesteps , num_hidden):
# Prepare data shape to match `rnn` function requirements
# Current data input shape: (batch_size, timesteps, n_input)
# Required shape: 'timesteps' tensors list of shape (batch_size, n_input)
# Unstack to get a list of 'timesteps' tensors of shape (batch_size, n_input)
x = tf.unstack(x, timesteps, 1)
# Define a lstm cell with tensorflow
lstm_cell = rnn.BasicLSTMCell(num_hidden, forget_bias=1.0)
# Get lstm cell output
outputs, states = rnn.static_rnn(lstm_cell, x, dtype=tf.float32)
# Linear activation, using rnn inner loop last output
return tf.matmul(outputs[-1], weights['out']) + biases['out']
示例6: RNN
# 需要导入模块: from tensorflow.contrib import rnn [as 别名]
# 或者: from tensorflow.contrib.rnn import static_rnn [as 别名]
def RNN(x, weights, biases):
timesteps = 28 # timesteps
num_hidden = 128 # hidden layer num of features
# Prepare data shape to match `rnn` function requirements
# Current data input shape: (batch_size, timesteps, n_input)
# Required shape: 'timesteps' tensors list of shape (batch_size, n_input)
# Unstack to get a list of 'timesteps' tensors of shape (batch_size, n_input)
x = tf.unstack(x, timesteps, 1)
# Define a lstm cell with tensorflow
lstm_cell = rnn.BasicLSTMCell(num_hidden, forget_bias=1.0)
# Get lstm cell output
outputs, states = rnn.static_rnn(lstm_cell, x, dtype=tf.float32)
# Linear activation, using rnn inner loop last output
return tf.matmul(outputs[-1], weights['out']) + biases['out']
示例7: RNN
# 需要导入模块: from tensorflow.contrib import rnn [as 别名]
# 或者: from tensorflow.contrib.rnn import static_rnn [as 别名]
def RNN(x, weights, biases):
# Prepare data shape to match `rnn` function requirements
# Current data input shape: (batch_size, timesteps, n_input)
# Required shape: 'timesteps' tensors list of shape (batch_size, n_input)
# Unstack to get a list of 'timesteps' tensors of shape (batch_size, n_input)
x = tf.unstack(x, timesteps, 1)
# Define a lstm cell with tensorflow
lstm_cell = rnn.BasicLSTMCell(num_hidden, forget_bias=1.0)
# Get lstm cell output
outputs, states = rnn.static_rnn(lstm_cell, x, dtype=tf.float32)
# Linear activation, using rnn inner loop last output
return tf.matmul(outputs[-1], weights['out']) + biases['out']
示例8: RNN
# 需要导入模块: from tensorflow.contrib import rnn [as 别名]
# 或者: from tensorflow.contrib.rnn import static_rnn [as 别名]
def RNN(x, weights, biases):
timesteps = 83 # timesteps
num_hidden = 128 # hidden layer num of features
# Prepare data shape to match `rnn` function requirements
# Current data input shape: (batch_size, timesteps, n_input)
# Required shape: 'timesteps' tensors list of shape (batch_size, n_input)
# Unstack to get a list of 'timesteps' tensors of shape (batch_size, n_input)
x = tf.unstack(x, timesteps, 1)
# Define a lstm cell with tensorflow
lstm_cell = rnn.BasicLSTMCell(num_hidden, forget_bias=1.0)
# Get lstm cell output
outputs, states = rnn.static_rnn(lstm_cell, x, dtype=tf.float32)
# Linear activation, using rnn inner loop last output
return tf.matmul(outputs[-1], weights['out']) + biases['out']