本文整理汇总了Python中tensorflow.contrib.rnn.MultiRNNCell方法的典型用法代码示例。如果您正苦于以下问题:Python rnn.MultiRNNCell方法的具体用法?Python rnn.MultiRNNCell怎么用?Python rnn.MultiRNNCell使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.contrib.rnn
的用法示例。
在下文中一共展示了rnn.MultiRNNCell方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: RNN
# 需要导入模块: from tensorflow.contrib import rnn [as 别名]
# 或者: from tensorflow.contrib.rnn import MultiRNNCell [as 别名]
def RNN(x, weights, biases):
# reshape to [1, n_input]
x = tf.reshape(x, [-1, n_input])
# Generate a n_input-element sequence of inputs
# (eg. [had] [a] [general] -> [20] [6] [33])
x = tf.split(x, n_input, 1)
# 2-layer LSTM, each layer has n_hidden units.
# Average Accuracy= 95.20% at 50k iter
rnn_cell = rnn.MultiRNNCell([rnn.BasicLSTMCell(n_hidden), rnn.BasicLSTMCell(n_hidden)])
# 1-layer LSTM with n_hidden units but with lower accuracy.
# Average Accuracy= 90.60% 50k iter
# Uncomment line below to test but comment out the 2-layer rnn.MultiRNNCell above
# rnn_cell = rnn.BasicLSTMCell(n_hidden)
# generate prediction
outputs, states = rnn.static_rnn(rnn_cell, x, dtype=tf.float32)
# there are n_input outputs but
# we only want the last output
return tf.matmul(outputs[-1], weights['out']) + biases['out']
示例2: __init__
# 需要导入模块: from tensorflow.contrib import rnn [as 别名]
# 或者: from tensorflow.contrib.rnn import MultiRNNCell [as 别名]
def __init__(self, state_size, num_layers, dropout_prob, base_cell):
"""Define the cell by composing/wrapping with tf.contrib.rnn functions.
Args:
state_size: number of units in the cell.
num_layers: how many cells to include in the MultiRNNCell.
dropout_prob: probability of a node being dropped.
base_cell: (str) name of underling cell to use (e.g. 'GRUCell')
"""
self._state_size = state_size
self._num_layers = num_layers
self._dropout_prob = dropout_prob
self._base_cell = base_cell
def single_cell():
"""Convert cell name (str) to class, and create it."""
return getattr(tf.contrib.rnn, base_cell)(num_units=state_size)
if num_layers == 1:
self._cell = single_cell()
else:
self._cell = MultiRNNCell(
[single_cell() for _ in range(num_layers)])
示例3: build_lstm
# 需要导入模块: from tensorflow.contrib import rnn [as 别名]
# 或者: from tensorflow.contrib.rnn import MultiRNNCell [as 别名]
def build_lstm(self):
def build_cell():
cell = rnn.BasicLSTMCell(self._hidden_size, forget_bias=1.0, state_is_tuple=True)
cell = rnn.DropoutWrapper(cell, output_keep_prob=self._keep_prob)
return cell
mul_cell = rnn.MultiRNNCell([build_cell() for _ in range(self._num_layer)],
state_is_tuple=True)
self._init_state = mul_cell.zero_state(self._num_seq, dtype=tf.float32)
outputs, self._final_state = tf.nn.dynamic_rnn(mul_cell, self._inputs,
initial_state=self._init_state)
outputs = tf.reshape(outputs, [-1, self._hidden_size])
W = tf.Variable(tf.truncated_normal([self._hidden_size, self._corpus.word_num],
stddev=0.1, dtype=tf.float32))
bais = tf.Variable(tf.zeros([1, self._corpus.word_num],
dtype=tf.float32), dtype=tf.float32)
self._prediction = tf.nn.softmax(tf.matmul(outputs, W) + bais)
示例4: create_model
# 需要导入模块: from tensorflow.contrib import rnn [as 别名]
# 或者: from tensorflow.contrib.rnn import MultiRNNCell [as 别名]
def create_model(self):
features = tf.placeholder(tf.int32, [None, self.seq_len])
embedding = tf.get_variable(
'embedding', [self.vocab_size + 1, self.n_hidden], dtype=tf.float32)
x = tf.cast(tf.nn.embedding_lookup(embedding, features), tf.float32)
labels = tf.placeholder(tf.float32, [None, self.num_classes])
stacked_lstm = rnn.MultiRNNCell(
[rnn.BasicLSTMCell(self.n_hidden) for _ in range(2)])
outputs, _ = tf.nn.dynamic_rnn(stacked_lstm, x, dtype=tf.float32)
fc1 = tf.layers.dense(inputs=outputs[:, -1, :], units=128)
pred = tf.layers.dense(inputs=fc1, units=self.num_classes)
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=pred, labels=labels))
train_op = self.optimizer.minimize(
loss=loss,
global_step=tf.train.get_global_step())
correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(labels, 1))
eval_metric_ops = tf.count_nonzero(correct_pred)
return features, labels, train_op, eval_metric_ops, loss
示例5: create_model
# 需要导入模块: from tensorflow.contrib import rnn [as 别名]
# 或者: from tensorflow.contrib.rnn import MultiRNNCell [as 别名]
def create_model(self):
features = tf.placeholder(tf.int32, [None, self.seq_len])
embedding = tf.get_variable("embedding", [self.num_classes, 8])
x = tf.nn.embedding_lookup(embedding, features)
labels = tf.placeholder(tf.int32, [None, self.num_classes])
stacked_lstm = rnn.MultiRNNCell(
[rnn.BasicLSTMCell(self.n_hidden) for _ in range(2)])
outputs, _ = tf.nn.dynamic_rnn(stacked_lstm, x, dtype=tf.float32)
pred = tf.layers.dense(inputs=outputs[:,-1,:], units=self.num_classes)
loss = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits_v2(logits=pred, labels=labels))
train_op = self.optimizer.minimize(
loss=loss,
global_step=tf.train.get_global_step())
correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(labels, 1))
eval_metric_ops = tf.count_nonzero(correct_pred)
return features, labels, train_op, eval_metric_ops, loss
示例6: __init__
# 需要导入模块: from tensorflow.contrib import rnn [as 别名]
# 或者: from tensorflow.contrib.rnn import MultiRNNCell [as 别名]
def __init__(self, nlayers, num_units, input_size=None,
use_peepholes=False, cell_clip=None, initializer=None,
num_proj=None, proj_clip=None, num_unit_shards=1,
num_proj_shards=1, forget_bias=1.0, state_is_tuple=True,
activation=tanh):
super(MultiInputLSTM, self).__init__(num_units, input_size=None,
use_peepholes=False,cell_clip=None, initializer=None, num_proj=None,
proj_clip=None, num_unit_shards=1, num_proj_shards=1,
forget_bias=1.0,state_is_tuple=True, activation=tanh)
self.cell = super(MultiInputLSTM, self).__call__
if nlayers > 1:
self.cell = MultiRNNCell([self.cell] * nlayers)
self.nlayers = nlayers
示例7: __build
# 需要导入模块: from tensorflow.contrib import rnn [as 别名]
# 或者: from tensorflow.contrib.rnn import MultiRNNCell [as 别名]
def __build(self):
w_fc_in = self.__weight_variable([self.nClasses+1, 128], 'w_fc_in')
b_fc_in = self.__bias_variable([128], 'b_fc_in')
w_fc_o = self.__weight_variable([self.rnn_size, 128], 'w_fc_o')
b_fc_o = self.__bias_variable([128], 'b_fc_o')
w_output_action = self.__weight_variable([128, self.nClasses], 'w_fc_in')
b_output_action = self.__bias_variable([self.nClasses], 'b_fc_in')
w_output_len = self.__weight_variable([128, 2], 'w_fc_in')
b_output_len = self.__bias_variable([2], 'b_fc_in')
x = tf.reshape(self.input_seq, [-1, self.nClasses+1])
h1 = tf.nn.relu(tf.matmul(x, w_fc_in) + b_fc_in)
h1 = tf.reshape(h1, [-1,self.max_seq_sz,128])
#rnn
h1 = tf.unstack(h1, axis=1)
def get_cell():
return rnn.GRUCell(self.rnn_size)
gru_cell = rnn.MultiRNNCell([get_cell() for _ in range(self.num_layers)])
outputs, states = rnn.static_rnn(gru_cell, h1, dtype=tf.float32)
#fc_o
h2 = tf.nn.relu(tf.matmul(outputs[-1], w_fc_o) + b_fc_o)
#output
output_label = tf.matmul(h2, w_output_action) + b_output_action
output_len = tf.nn.relu(tf.matmul(h2, w_output_len) + b_output_len)
#
self.prediction = tf.concat([output_label, output_len], 1)
self.saver = tf.train.Saver(write_version=tf.train.SaverDef.V2, max_to_keep=100)
示例8: cell
# 需要导入模块: from tensorflow.contrib import rnn [as 别名]
# 或者: from tensorflow.contrib.rnn import MultiRNNCell [as 别名]
def cell(self):
""" Return the cell """
with tf.variable_scope(self.variable_scope, reuse=self.reuse):
cell = rnn.LSTMCell(self.num_units, reuse=self.reuse)
if self.num_layers > 1:
cell = rnn.MultiRNNCell([cell] * self.num_layers)
return cell
示例9: construct_rnn_cell
# 需要导入模块: from tensorflow.contrib import rnn [as 别名]
# 或者: from tensorflow.contrib.rnn import MultiRNNCell [as 别名]
def construct_rnn_cell(num_units, cell_type='basic_rnn',
dropout_keep_probabilities=None):
"""Constructs cells, applies dropout and assembles a `MultiRNNCell`.
The cell type chosen by DynamicRNNEstimator.__init__() is the same as
returned by this function when called with the same arguments.
Args:
num_units: A single `int` or a list/tuple of `int`s. The size of the
`RNNCell`s.
cell_type: A string identifying the `RNNCell` type or a subclass of
`RNNCell`.
dropout_keep_probabilities: a list of dropout probabilities or `None`. If a
list is given, it must have length `len(cell_type) + 1`.
Returns:
An initialized `RNNCell`.
"""
if not isinstance(num_units, (list, tuple)):
num_units = (num_units,)
cells = [_get_single_cell(cell_type, n) for n in num_units]
if dropout_keep_probabilities:
cells = apply_dropout(cells, dropout_keep_probabilities)
if len(cells) == 1:
return cells[0]
return contrib_rnn.MultiRNNCell(cells)
示例10: _to_rnn_cell
# 需要导入模块: from tensorflow.contrib import rnn [as 别名]
# 或者: from tensorflow.contrib.rnn import MultiRNNCell [as 别名]
def _to_rnn_cell(cell_or_type, num_units, num_layers):
"""Constructs and return an `RNNCell`.
Args:
cell_or_type: Either a string identifying the `RNNCell` type, a subclass of
`RNNCell` or an instance of an `RNNCell`.
num_units: The number of units in the `RNNCell`.
num_layers: The number of layers in the RNN.
Returns:
An initialized `RNNCell`.
Raises:
ValueError: `cell_or_type` is an invalid `RNNCell` name.
TypeError: `cell_or_type` is not a string or a subclass of `RNNCell`.
"""
if isinstance(cell_or_type, contrib_rnn.RNNCell):
return cell_or_type
if isinstance(cell_or_type, str):
cell_or_type = _CELL_TYPES.get(cell_or_type)
if cell_or_type is None:
raise ValueError('The supported cell types are {}; got {}'.format(
list(_CELL_TYPES.keys()), cell_or_type))
if not issubclass(cell_or_type, contrib_rnn.RNNCell):
raise TypeError(
'cell_or_type must be a subclass of RNNCell or one of {}.'.format(
list(_CELL_TYPES.keys())))
cell = cell_or_type(num_units=num_units)
if num_layers > 1:
cell = contrib_rnn.MultiRNNCell(
[cell] * num_layers, state_is_tuple=True)
return cell
示例11: cell_create
# 需要导入模块: from tensorflow.contrib import rnn [as 别名]
# 或者: from tensorflow.contrib.rnn import MultiRNNCell [as 别名]
def cell_create(self,scope_name):
with tf.variable_scope(scope_name):
if self.cell_type == 'tanh':
cells = rnn.MultiRNNCell([rnn.BasicRNNCell(self.n_hidden[i]) for i in range(self.n_layers)], state_is_tuple=True)
elif self.cell_type == 'LSTM':
cells = rnn.MultiRNNCell([rnn.BasicLSTMCell(self.n_hidden[i]) for i in range(self.n_layers)], state_is_tuple=True)
elif self.cell_type == 'GRU':
cells = rnn.MultiRNNCell([rnn.GRUCell(self.n_hidden[i]) for i in range(self.n_layers)], state_is_tuple=True)
elif self.cell_type == 'LSTMP':
cells = rnn.MultiRNNCell([rnn.LSTMCell(self.n_hidden[i]) for i in range(self.n_layers)], state_is_tuple=True)
cells = rnn.DropoutWrapper(cells, input_keep_prob=self.dropout_ph,output_keep_prob=self.dropout_ph)
return cells
示例12: getLayeredCell
# 需要导入模块: from tensorflow.contrib import rnn [as 别名]
# 或者: from tensorflow.contrib.rnn import MultiRNNCell [as 别名]
def getLayeredCell(layer_size, num_units, input_keep_prob,
output_keep_prob=1.0):
return rnn.MultiRNNCell([rnn.DropoutWrapper(rnn.BasicLSTMCell(num_units),
input_keep_prob, output_keep_prob) for i in range(layer_size)])
示例13: test_multi_rnn
# 需要导入模块: from tensorflow.contrib import rnn [as 别名]
# 或者: from tensorflow.contrib.rnn import MultiRNNCell [as 别名]
def test_multi_rnn():
"""
Test a stacked LSTM with nested tuple state.
"""
def make_cell():
return MultiRNNCell([LSTMCell(16), LSTMCell(32)])
run_ac_test(partial(RNNCellAC, make_cell=make_cell))
示例14: define_rnn_cell
# 需要导入模块: from tensorflow.contrib import rnn [as 别名]
# 或者: from tensorflow.contrib.rnn import MultiRNNCell [as 别名]
def define_rnn_cell(cell_class, num_units, num_layers=1, keep_prob=1.0,
input_keep_prob=None, output_keep_prob=None):
if input_keep_prob is None:
input_keep_prob = keep_prob
if output_keep_prob is None:
output_keep_prob = keep_prob
cells = []
for _ in range(num_layers):
if cell_class == 'GRU':
cell = GRUCell(num_units=num_units)
elif cell_class == 'LSTM':
cell = LSTMCell(num_units=num_units)
else:
cell = RNNCell(num_units=num_units)
if keep_prob < 1.0:
cell = DropoutWrapper(cell=cell, input_keep_prob=input_keep_prob, output_keep_prob=output_keep_prob)
cells.append(cell)
if len(cells) > 1:
final_cell = MultiRNNCell(cells)
else:
final_cell = cells[0]
return final_cell
示例15: _make_encoder
# 需要导入模块: from tensorflow.contrib import rnn [as 别名]
# 或者: from tensorflow.contrib.rnn import MultiRNNCell [as 别名]
def _make_encoder(self):
"""Create the encoder"""
inputs = layers.embed_sequence(
self.X,
vocab_size=self.vocab_size,
embed_dim=self.embed_dim,
scope='embed')
# Project to correct dimensions
# b/c the bidirectional RNN's forward and backward
# outputs are concatenated, the size will be 2x,
# so halve the hidden sizes here to compensate
inputs = tf.layers.dense(inputs, self.hidden_size//2)
cell_fw = rnn.MultiRNNCell([
self._make_cell(self.hidden_size//2) for _ in range(self.depth)
])
cell_bw = rnn.MultiRNNCell([
self._make_cell(self.hidden_size//2) for _ in range(self.depth)
])
encoder_outputs, encoder_final_state = tf.nn.bidirectional_dynamic_rnn(
cell_fw=cell_fw, cell_bw=cell_bw, sequence_length=self.sequence_length,
inputs=inputs, dtype=tf.float32)
# Concat forward and backward outputs
encoder_outputs = tf.concat(encoder_outputs, 2)
# Concat forward and backward layer states
encoder_fw_states, encoder_bw_states = encoder_final_state
encoder_final_state = []
for fw, bw in zip(encoder_fw_states, encoder_bw_states):
c = tf.concat([fw.c, bw.c], 1)
h = tf.concat([fw.h, bw.h], 1)
encoder_final_state.append(rnn.LSTMStateTuple(c=c, h=h))
return encoder_outputs, encoder_final_state