本文整理汇总了Python中tensorflow.contrib.rnn.BasicRNNCell方法的典型用法代码示例。如果您正苦于以下问题:Python rnn.BasicRNNCell方法的具体用法?Python rnn.BasicRNNCell怎么用?Python rnn.BasicRNNCell使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.contrib.rnn
的用法示例。
在下文中一共展示了rnn.BasicRNNCell方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __init__
# 需要导入模块: from tensorflow.contrib import rnn [as 别名]
# 或者: from tensorflow.contrib.rnn import BasicRNNCell [as 别名]
def __init__(self,
num_units,
tied=False,
non_recurrent_fn=None,
state_is_tuple=True,
output_is_tuple=True):
super(Grid2BasicRNNCell, self).__init__(
num_units=num_units,
num_dims=2,
input_dims=0,
output_dims=0,
priority_dims=0,
tied=tied,
non_recurrent_dims=None if non_recurrent_fn is None else 0,
cell_fn=lambda n: rnn.BasicRNNCell(num_units=n),
non_recurrent_fn=non_recurrent_fn,
state_is_tuple=state_is_tuple,
output_is_tuple=output_is_tuple)
示例2: build_cell
# 需要导入模块: from tensorflow.contrib import rnn [as 别名]
# 或者: from tensorflow.contrib.rnn import BasicRNNCell [as 别名]
def build_cell(self, name=None):
if self.hparams.cell_type == 'linear':
cell = BasicRNNCell(self.hparams.hidden_units,
activation=tf.identity, name=name)
elif self.hparams.cell_type == 'tanh':
cell = BasicRNNCell(self.hparams.hidden_units,
activation=tf.tanh, name=name)
elif self.hparams.cell_type == 'relu':
cell = BasicRNNCell(self.hparams.hidden_units,
activation=tf.nn.relu, name=name)
elif self.hparams.cell_type == 'gru':
cell = GRUCell(self.hparams.hidden_units, name=name)
elif self.hparams.cell_type == 'lstm':
cell = LSTMCell(self.hparams.hidden_units, name=name, state_is_tuple=False)
else:
raise ValueError('Provided cell type not supported.')
return cell
示例3: RNN
# 需要导入模块: from tensorflow.contrib import rnn [as 别名]
# 或者: from tensorflow.contrib.rnn import BasicRNNCell [as 别名]
def RNN(x, weights, biases, max_time, num_hidden):
# Prepare data shape to match `rnn` function requirements
# Current data input shape: (batch_size, timesteps, n_input)
# Required shape: 'timesteps' tensors list of shape (batch_size, n_input)
# Unstack to get a list of 'timesteps' tensors of shape (batch_size, n_input)
x = tf.unstack(x, max_time, 1)
# Define a rnn cell with tensorflow
# rnn_cell = rnn.BasicRNNCell(num_hidden)
# Define a lstm cell with tensorflow
lstm_cell = rnn.BasicLSTMCell(num_hidden)
# Get lstm cell output
# If no initial_state is provided, dtype must be specified
# If no initial cell satte is provided, they will be initialized to zero
# states_series, current_state = rnn.static_rnn(rnn_cell, x, dtype=tf.float32)
outputs, states = rnn.static_rnn(lstm_cell, x, dtype=tf.float32)
# Linear activation, using rnn inner loop last output
# return tf.matmul(current_state, weights) + biases
return tf.matmul(outputs[-1], weights) + biases
示例4: __init__
# 需要导入模块: from tensorflow.contrib import rnn [as 别名]
# 或者: from tensorflow.contrib.rnn import BasicRNNCell [as 别名]
def __init__(self, num_units):
super(Grid1BasicRNNCell, self).__init__(
num_units=num_units, num_dims=1,
input_dims=0, output_dims=0, priority_dims=0, tied=False,
cell_fn=lambda n, i: rnn.BasicRNNCell(num_units=n, input_size=i))
示例5: cell_create
# 需要导入模块: from tensorflow.contrib import rnn [as 别名]
# 或者: from tensorflow.contrib.rnn import BasicRNNCell [as 别名]
def cell_create(self,scope_name):
with tf.variable_scope(scope_name):
if self.cell_type == 'tanh':
cells = rnn.MultiRNNCell([rnn.BasicRNNCell(self.n_hidden[i]) for i in range(self.n_layers)], state_is_tuple=True)
elif self.cell_type == 'LSTM':
cells = rnn.MultiRNNCell([rnn.BasicLSTMCell(self.n_hidden[i]) for i in range(self.n_layers)], state_is_tuple=True)
elif self.cell_type == 'GRU':
cells = rnn.MultiRNNCell([rnn.GRUCell(self.n_hidden[i]) for i in range(self.n_layers)], state_is_tuple=True)
elif self.cell_type == 'LSTMP':
cells = rnn.MultiRNNCell([rnn.LSTMCell(self.n_hidden[i]) for i in range(self.n_layers)], state_is_tuple=True)
cells = rnn.DropoutWrapper(cells, input_keep_prob=self.dropout_ph,output_keep_prob=self.dropout_ph)
return cells
示例6: _inference
# 需要导入模块: from tensorflow.contrib import rnn [as 别名]
# 或者: from tensorflow.contrib.rnn import BasicRNNCell [as 别名]
def _inference(self):
logging.info('...create inference')
fw_state_tuple = self.unstack_fw_states(self.fw_state)
fw_cells = list()
for i in range(0, self.num_layers):
if (self.cell_type == 'lstm'):
cell = rnn.LSTMCell(num_units=self.cell_sizes[i], state_is_tuple=True)
elif (self.cell_type == 'gru'):
# change to GRU
cell = rnn.GRUCell(num_units=self.cell_sizes[i])
else:
cell = rnn.BasicRNNCell(num_units=self.cell_sizes[i])
cell = rnn.DropoutWrapper(cell, output_keep_prob=self.keep_prob)
fw_cells.append(cell)
self.fw_cells = rnn.MultiRNNCell(fw_cells, state_is_tuple=True)
rnn_outputs, states = tf.nn.dynamic_rnn(
self.fw_cells,
self.inputs,
initial_state=fw_state_tuple,
sequence_length=self.seq_lengths,
dtype=tf.float32, time_major=True)
# project output from rnn output size to OUTPUT_SIZE. Sometimes it is worth adding
# an extra layer here.
self.projection = lambda x: layers.linear(x,
num_outputs=self.label_classes, activation_fn=tf.nn.sigmoid)
self.logits = tf.map_fn(self.projection, rnn_outputs, name="logits")
self.probs = tf.nn.softmax(self.logits, name="probs")
self.states = states
tf.add_to_collection('probs', self.probs)
示例7: __init__
# 需要导入模块: from tensorflow.contrib import rnn [as 别名]
# 或者: from tensorflow.contrib.rnn import BasicRNNCell [as 别名]
def __init__(self, args, infer=False):
self.args = args
if infer:
args.batch_size = 1
args.seq_length = 1
additional_cell_args = {}
if args.model == 'rnn':
cell_fn = rnn_cell.BasicRNNCell
elif args.model == 'gru':
cell_fn = rnn_cell.GRUCell
elif args.model == 'lstm':
cell_fn = rnn_cell.BasicLSTMCell
elif args.model == 'gridlstm':
cell_fn = grid_rnn.Grid2LSTMCell
additional_cell_args.update({'use_peepholes': True, 'forget_bias': 1.0})
elif args.model == 'gridgru':
cell_fn = grid_rnn.Grid2GRUCell
else:
raise Exception("model type not supported: {}".format(args.model))
cell = cell_fn(args.rnn_size, **additional_cell_args)
self.cell = cell = rnn_cell.MultiRNNCell([cell] * args.num_layers)
self.input_data = tf.placeholder(tf.int32, [args.batch_size, args.seq_length])
self.targets = tf.placeholder(tf.int32, [args.batch_size, args.seq_length])
self.initial_state = cell.zero_state(args.batch_size, tf.float32)
with tf.variable_scope('rnnlm'):
softmax_w = tf.get_variable("softmax_w", [args.rnn_size, args.vocab_size])
softmax_b = tf.get_variable("softmax_b", [args.vocab_size])
with tf.device("/cpu:0"):
embedding = tf.get_variable("embedding", [args.vocab_size, args.rnn_size])
inputs = tf.split(axis=1, num_or_size_splits=args.seq_length,
value=tf.nn.embedding_lookup(embedding, self.input_data))
inputs = [tf.squeeze(input_, [1]) for input_ in inputs]
def loop(prev, _):
prev = tf.nn.xw_plus_b(prev, softmax_w, softmax_b)
prev_symbol = tf.stop_gradient(tf.argmax(prev, 1))
return tf.nn.embedding_lookup(embedding, prev_symbol)
outputs, last_state = seq2seq.rnn_decoder(inputs, self.initial_state, cell,
loop_function=loop if infer else None, scope='rnnlm')
# output = tf.reshape(tf.concat(1, outputs), [-1, args.rnn_size])
output = tf.reshape(tf.concat(axis=1, values=outputs), [-1, args.rnn_size])
self.logits = tf.nn.xw_plus_b(output, softmax_w, softmax_b)
self.probs = tf.nn.softmax(self.logits)
loss = seq2seq.sequence_loss_by_example([self.logits],
[tf.reshape(self.targets, [-1])],
[tf.ones([args.batch_size * args.seq_length])],
args.vocab_size)
self.cost = tf.reduce_sum(loss) / args.batch_size / args.seq_length
self.final_state = last_state
self.lr = tf.Variable(0.0, trainable=False)
tvars = tf.trainable_variables()
grads, _ = tf.clip_by_global_norm(tf.gradients(self.cost, tvars),
args.grad_clip)
optimizer = tf.train.AdamOptimizer(self.lr)
self.train_op = optimizer.apply_gradients(zip(grads, tvars))
示例8: main
# 需要导入模块: from tensorflow.contrib import rnn [as 别名]
# 或者: from tensorflow.contrib.rnn import BasicRNNCell [as 别名]
def main():
args = parser.parse_args()
input_size = args.input_size
batch_size = args.batch_size
hidden_size = args.hidden_size
# Placeholders for inputs.
x = tf.placeholder(tf.float32, [batch_size, args.ponder, 1+input_size])
y = tf.placeholder(tf.float32, [batch_size, 1])
zeros = tf.zeros([batch_size, 1])
rnn = BasicRNNCell(args.hidden_size)
outputs, final_state = tf.nn.dynamic_rnn(rnn, x, dtype=tf.float32)
softmax_w = tf.get_variable("softmax_w", [hidden_size, 1])
softmax_b = tf.get_variable("softmax_b", [1])
logits = tf.matmul(final_state, softmax_w) + softmax_b
loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=y, logits=logits)
loss = tf.reduce_mean(loss)
train_step = tf.train.AdamOptimizer(args.lr).minimize(loss)
correct_prediction = tf.equal(tf.cast(tf.greater(logits, zeros), tf.float32), y)
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
tf.summary.scalar('Accuracy', accuracy)
tf.summary.scalar('Loss', loss)
merged = tf.summary.merge_all()
logdir = './logs/parity_test/LR={}_Len={}_Pond={}'.format(args.lr, args.input_size, args.ponder)
while os.path.isdir(logdir):
logdir += '_'
if args.log:
writer = tf.summary.FileWriter(logdir)
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=args.vram_fraction)
with tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) as sess:
sess.run(tf.global_variables_initializer())
loop = trange(args.steps)
for i in loop:
batch = generate(args)
if i % args.log_interval == 0:
summary, step_accuracy, step_loss = sess.run([merged, accuracy, loss], feed_dict={x: batch[0],
y: batch[1]})
if args.print_results:
loop.set_postfix(Loss='{:0.3f}'.format(step_loss),
Accuracy='{:0.3f}'.format(step_accuracy))
if args.log:
writer.add_summary(summary, i)
train_step.run(feed_dict={x: batch[0], y: batch[1]})