本文整理汇总了Python中tensorflow.contrib.learn.infer_real_valued_columns_from_input方法的典型用法代码示例。如果您正苦于以下问题:Python learn.infer_real_valued_columns_from_input方法的具体用法?Python learn.infer_real_valued_columns_from_input怎么用?Python learn.infer_real_valued_columns_from_input使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.contrib.learn
的用法示例。
在下文中一共展示了learn.infer_real_valued_columns_from_input方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: main
# 需要导入模块: from tensorflow.contrib import learn [as 别名]
# 或者: from tensorflow.contrib.learn import infer_real_valued_columns_from_input [as 别名]
def main(unused_argv):
iris = load_iris()
x_train, x_test, y_train, y_test = cross_validation.train_test_split(
iris.data, iris.target, test_size=0.2, random_state=42)
# It's useful to scale to ensure Stochastic Gradient Descent
# will do the right thing.
scaler = StandardScaler()
# DNN classifier.
classifier = learn.DNNClassifier(
feature_columns=learn.infer_real_valued_columns_from_input(x_train),
hidden_units=[10, 20, 10], n_classes=3)
pipeline = Pipeline([('scaler', scaler),
('DNNclassifier', classifier)])
pipeline.fit(x_train, y_train, DNNclassifier__steps=200)
score = accuracy_score(y_test, list(pipeline.predict(x_test)))
print('Accuracy: {0:f}'.format(score))
示例2: main
# 需要导入模块: from tensorflow.contrib import learn [as 别名]
# 或者: from tensorflow.contrib.learn import infer_real_valued_columns_from_input [as 别名]
def main(unused_argv):
# Load dataset.
iris = learn.datasets.load_dataset('iris')
x_train, x_test, y_train, y_test = cross_validation.train_test_split(
iris.data, iris.target, test_size=0.2, random_state=42)
# Build 3 layer DNN with 10, 20, 10 units respectively.
feature_columns = learn.infer_real_valued_columns_from_input(x_train)
classifier = learn.DNNClassifier(
feature_columns=feature_columns, hidden_units=[10, 20, 10], n_classes=3)
# Fit and predict.
classifier.fit(x_train, y_train, steps=200)
predictions = list(classifier.predict(x_test, as_iterable=True))
score = metrics.accuracy_score(y_test, predictions)
print('Accuracy: {0:f}'.format(score))
示例3: main
# 需要导入模块: from tensorflow.contrib import learn [as 别名]
# 或者: from tensorflow.contrib.learn import infer_real_valued_columns_from_input [as 别名]
def main(unused_argv):
# Load dataset
boston = learn.datasets.load_dataset('boston')
x, y = boston.data, boston.target
# Split dataset into train / test
x_train, x_test, y_train, y_test = cross_validation.train_test_split(
x, y, test_size=0.2, random_state=42)
# Scale data (training set) to 0 mean and unit standard deviation.
scaler = preprocessing.StandardScaler()
x_train = scaler.fit_transform(x_train)
# Build 2 layer fully connected DNN with 10, 10 units respectively.
feature_columns = learn.infer_real_valued_columns_from_input(x_train)
regressor = learn.DNNRegressor(
feature_columns=feature_columns, hidden_units=[10, 10])
# Fit
regressor.fit(x_train, y_train, steps=5000, batch_size=1)
# Predict and score
y_predicted = list(
regressor.predict(scaler.transform(x_test), as_iterable=True))
score = metrics.mean_squared_error(y_predicted, y_test)
print('MSE: {0:f}'.format(score))
示例4: main
# 需要导入模块: from tensorflow.contrib import learn [as 别名]
# 或者: from tensorflow.contrib.learn import infer_real_valued_columns_from_input [as 别名]
def main(unused_argv):
iris = datasets.load_iris()
x_train, x_test, y_train, y_test = train_test_split(
iris.data, iris.target, test_size=0.2, random_state=42)
x_train, x_val, y_train, y_val = train_test_split(
x_train, y_train, test_size=0.2, random_state=42)
val_monitor = learn.monitors.ValidationMonitor(
x_val, y_val, early_stopping_rounds=200)
model_dir = '/tmp/iris_model'
clean_folder(model_dir)
# classifier with early stopping on training data
classifier1 = learn.DNNClassifier(
feature_columns=learn.infer_real_valued_columns_from_input(x_train),
hidden_units=[10, 20, 10], n_classes=3, model_dir=model_dir)
classifier1.fit(x=x_train, y=y_train, steps=2000)
predictions1 = list(classifier1.predict(x_test, as_iterable=True))
score1 = metrics.accuracy_score(y_test, predictions1)
model_dir = '/tmp/iris_model_val'
clean_folder(model_dir)
# classifier with early stopping on validation data, save frequently for
# monitor to pick up new checkpoints.
classifier2 = learn.DNNClassifier(
feature_columns=learn.infer_real_valued_columns_from_input(x_train),
hidden_units=[10, 20, 10], n_classes=3, model_dir=model_dir,
config=tf.contrib.learn.RunConfig(save_checkpoints_secs=1))
classifier2.fit(x=x_train, y=y_train, steps=2000, monitors=[val_monitor])
predictions2 = list(classifier2.predict(x_test, as_iterable=True))
score2 = metrics.accuracy_score(y_test, predictions2)
# In many applications, the score is improved by using early stopping
print('score1: ', score1)
print('score2: ', score2)
print('score2 > score1: ', score2 > score1)
示例5: main
# 需要导入模块: from tensorflow.contrib import learn [as 别名]
# 或者: from tensorflow.contrib.learn import infer_real_valued_columns_from_input [as 别名]
def main(unused_argv):
# Load dataset.
iris = learn.datasets.load_dataset('iris')
x_train, x_test, y_train, y_test = cross_validation.train_test_split(
iris.data, iris.target, test_size=0.2, random_state=42)
# Note that we are saving and load iris data as h5 format as a simple
# demonstration here.
h5f = h5py.File('/tmp/test_hdf5.h5', 'w')
h5f.create_dataset('X_train', data=x_train)
h5f.create_dataset('X_test', data=x_test)
h5f.create_dataset('y_train', data=y_train)
h5f.create_dataset('y_test', data=y_test)
h5f.close()
h5f = h5py.File('/tmp/test_hdf5.h5', 'r')
x_train = np.array(h5f['X_train'])
x_test = np.array(h5f['X_test'])
y_train = np.array(h5f['y_train'])
y_test = np.array(h5f['y_test'])
# Build 3 layer DNN with 10, 20, 10 units respectively.
feature_columns = learn.infer_real_valued_columns_from_input(x_train)
classifier = learn.DNNClassifier(
feature_columns=feature_columns, hidden_units=[10, 20, 10], n_classes=3)
# Fit and predict.
classifier.fit(x_train, y_train, steps=200)
score = metrics.accuracy_score(y_test, classifier.predict(x_test))
print('Accuracy: {0:f}'.format(score))