本文整理汇总了Python中tensorflow.contrib.layers.separable_conv2d方法的典型用法代码示例。如果您正苦于以下问题:Python layers.separable_conv2d方法的具体用法?Python layers.separable_conv2d怎么用?Python layers.separable_conv2d使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.contrib.layers
的用法示例。
在下文中一共展示了layers.separable_conv2d方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: gconvbn
# 需要导入模块: from tensorflow.contrib import layers [as 别名]
# 或者: from tensorflow.contrib.layers import separable_conv2d [as 别名]
def gconvbn(*args, **kwargs):
scope = kwargs.pop('scope', None)
with tf.variable_scope(scope):
x = sconv2d(*args, **kwargs)
c = args[-1]
infilters = int(x.shape[-1]) if tf_later_than('2') else x.shape[-1].value
f = infilters // c
g = f // c
kernel = np.zeros((1, 1, f * c, f), np.float32)
for i in range(f):
start = (i // c) * c * c + i % c
end = start + c * c
kernel[:, :, start:end:c, i] = 1.
x = conv2d_primitive(x, tf.constant(kernel), strides=[1, 1, 1, 1],
padding='VALID', name='gconv')
return batch_norm(x)
示例2: sconvbn
# 需要导入模块: from tensorflow.contrib import layers [as 别名]
# 或者: from tensorflow.contrib.layers import separable_conv2d [as 别名]
def sconvbn(*args, **kwargs):
scope = kwargs.pop('scope', None)
with tf.variable_scope(scope):
return batch_norm(sconv2d(*args, **kwargs))
示例3: sconvbnact
# 需要导入模块: from tensorflow.contrib import layers [as 别名]
# 或者: from tensorflow.contrib.layers import separable_conv2d [as 别名]
def sconvbnact(*args, **kwargs):
scope = kwargs.pop('scope', None)
activation_fn = kwargs.pop('activation_fn', None)
with tf.variable_scope(scope):
return activation_fn(batch_norm(sconv2d(*args, **kwargs)))
示例4: sconvbnrelu
# 需要导入模块: from tensorflow.contrib import layers [as 别名]
# 或者: from tensorflow.contrib.layers import separable_conv2d [as 别名]
def sconvbnrelu(*args, **kwargs):
scope = kwargs.pop('scope', None)
with tf.variable_scope(scope):
return relu(batch_norm(sconv2d(*args, **kwargs)))
示例5: sconvbnrelu6
# 需要导入模块: from tensorflow.contrib import layers [as 别名]
# 或者: from tensorflow.contrib.layers import separable_conv2d [as 别名]
def sconvbnrelu6(*args, **kwargs):
scope = kwargs.pop('scope', None)
with tf.variable_scope(scope):
return relu6(batch_norm(sconv2d(*args, **kwargs)))
示例6: test_get_input_activation2
# 需要导入模块: from tensorflow.contrib import layers [as 别名]
# 或者: from tensorflow.contrib.layers import separable_conv2d [as 别名]
def test_get_input_activation2(self, rank, fn, op_name):
g = tf.get_default_graph()
inputs = tf.zeros([6] * rank)
with arg_scope([
layers.conv2d, layers.conv2d_transpose, layers.separable_conv2d,
layers.conv3d
],
scope='test_layer'):
_ = fn(inputs)
for op in g.get_operations():
print(op.name)
self.assertEqual(
inputs,
cc.get_input_activation(
g.get_operation_by_name('test_layer/' + op_name)))
示例7: separable_conv2d
# 需要导入模块: from tensorflow.contrib import layers [as 别名]
# 或者: from tensorflow.contrib.layers import separable_conv2d [as 别名]
def separable_conv2d(self, *args, **kwargs):
"""Masks NUM_OUTPUTS from the function pointed to by 'separable_conv2d'.
The object's parameterization has precedence over the given NUM_OUTPUTS
argument. The resolution of the op names uses
tf.contrib.framework.get_name_scope() and kwargs['scope'].
Args:
*args: Arguments for the operation.
**kwargs: Key arguments for the operation.
Returns:
The result of the application of the function_map['separable_conv2d'] to
the given 'inputs', '*args', and '**kwargs' while possibly overriding
NUM_OUTPUTS according the parameterization.
Raises:
ValueError: If kwargs does not contain a key named 'scope'.
"""
# This function actually only decorates the num_outputs of the Conv2D after
# the depthwise convolution, as the former does not have any free params.
fn, suffix = self._get_function_and_suffix('separable_conv2d')
num_outputs_kwarg_name = self._get_num_outputs_kwarg_name(fn)
num_outputs = _get_from_args_or_kwargs(
num_outputs_kwarg_name, 1, args, kwargs, False)
if num_outputs is None:
tf.logging.warning(
'Trying to decorate separable_conv2d with num_outputs = None')
kwargs[num_outputs_kwarg_name] = None
return self._mask(fn, suffix, *args, **kwargs)
示例8: constructed_ops
# 需要导入模块: from tensorflow.contrib import layers [as 别名]
# 或者: from tensorflow.contrib.layers import separable_conv2d [as 别名]
def constructed_ops(self):
"""Returns a dictionary between op names built to their NUM_OUTPUTS.
The dictionary will contain an op.name: NUM_OUTPUTS pair for each op
constructed by the decorator. The dictionary is ordered according to the
order items were added.
The parameterization is accumulated during all the calls to the object's
members, such as `conv2d`, `fully_connected` and `separable_conv2d`.
The values used are either the values from the parameterization set for
the object, or the values that where passed to the members.
"""
return self._constructed_ops
示例9: _get_num_outputs_kwarg_name
# 需要导入模块: from tensorflow.contrib import layers [as 别名]
# 或者: from tensorflow.contrib.layers import separable_conv2d [as 别名]
def _get_num_outputs_kwarg_name(self, function):
"""Gets the `num_outputs`-equivalent kwarg for a supported function."""
alt_num_outputs_kwarg = {
tf_layers.conv2d: 'filters',
tf_layers.separable_conv2d: 'filters',
tf_layers.dense: 'units',
}
return alt_num_outputs_kwarg.get(function, _DEFAULT_NUM_OUTPUTS_KWARG)
示例10: testMapBinding
# 需要导入模块: from tensorflow.contrib import layers [as 别名]
# 或者: from tensorflow.contrib.layers import separable_conv2d [as 别名]
def testMapBinding(self):
# TODO(e1): Clean up this file/test. Split to different tests
function_dict = {
'fully_connected': mock_fully_connected,
'conv2d': mock_conv2d,
'separable_conv2d': mock_separable_conv2d,
'concat': mock_concat,
'add_n': mock_add_n,
}
parameterization = {
'fc/MatMul': 13,
'conv/Conv2D': 15,
'sep/separable_conv2d': 17
}
num_outputs = lambda res: res['args'][1]
decorator = ops.ConfigurableOps(
parameterization=parameterization, function_dict=function_dict)
fc = decorator.fully_connected(self.fc_inputs, num_outputs=88, scope='fc')
self.assertEqual('myfully_connected', fc['mock_name'])
self.assertEqual(parameterization['fc/MatMul'], num_outputs(fc))
conv2d = decorator.conv2d(
self.inputs, num_outputs=11, kernel_size=3, scope='conv')
self.assertEqual('myconv2d', conv2d['mock_name'])
self.assertEqual(parameterization['conv/Conv2D'], num_outputs(conv2d))
separable_conv2d = decorator.separable_conv2d(
self.inputs, num_outputs=88, kernel_size=3, scope='sep')
self.assertEqual('myseparable_conv2d', separable_conv2d['mock_name'])
self.assertEqual(parameterization['sep/separable_conv2d'],
num_outputs(separable_conv2d))
concat = decorator.concat(axis=1, values=[1, None, 2])
self.assertEqual(concat['args'][0], [1, 2])
self.assertEqual(concat['kwargs']['axis'], 1)
with self.assertRaises(ValueError):
_ = decorator.concat(inputs=[1, None, 2])
add_n = decorator.add_n(name='add_n', inputs=[1, None, 2])
self.assertEqual(add_n['args'][0], [1, 2])
示例11: testSeparableConv2dOp
# 需要导入模块: from tensorflow.contrib import layers [as 别名]
# 或者: from tensorflow.contrib.layers import separable_conv2d [as 别名]
def testSeparableConv2dOp(self):
parameterization = {'test/separable_conv2d': 12}
decorator = ops.ConfigurableOps(parameterization=parameterization)
output = decorator.separable_conv2d(
self.inputs,
num_outputs=88,
kernel_size=3,
depth_multiplier=1,
scope='test')
self.assertEqual(12, output.shape.as_list()[-1])
示例12: testDefaultScopesRepeated
# 需要导入模块: from tensorflow.contrib import layers [as 别名]
# 或者: from tensorflow.contrib.layers import separable_conv2d [as 别名]
def testDefaultScopesRepeated(self):
inputs = tf.ones([1, 3, 3, 2])
parameterization = {
's1/SeparableConv2d/separable_conv2d': 1,
's1/SeparableConv2d_1/separable_conv2d': 2,
's1/s2/SeparableConv2d/separable_conv2d': 3,
's1/s2/SeparableConv2d_1/separable_conv2d': 4,
}
decorator = ops.ConfigurableOps(
parameterization=parameterization,
function_dict={'separable_conv2d': tf_contrib.slim.separable_conv2d})
with tf.variable_scope('s1'):
# first call in s1: op scope should be `s1/SeparableConv2d`
_ = decorator.separable_conv2d(inputs, num_outputs=8, kernel_size=2)
with tf.variable_scope('s2'):
# first call in s2: op scope should be `s1/s2/SeparableConv2d`
_ = decorator.separable_conv2d(inputs, num_outputs=8, kernel_size=2)
# second call in s2: op scope should be `s1/s2/SeparableConv2d_1`
_ = decorator.separable_conv2d(inputs, num_outputs=8, kernel_size=2)
# second call in s1: op scope should be `s1/SeparableConv2d_1`
_ = decorator.separable_conv2d(inputs, num_outputs=8, kernel_size=2)
conv_op_names = [op.name for op in tf.get_default_graph().get_operations()
if op.name.endswith('separable_conv2d')]
self.assertCountEqual(parameterization, conv_op_names)
self.assertDictEqual(parameterization, decorator.constructed_ops)
示例13: __init__
# 需要导入模块: from tensorflow.contrib import layers [as 别名]
# 或者: from tensorflow.contrib.layers import separable_conv2d [as 别名]
def __init__(self):
self.conv2d = layers.conv2d
self.fully_connected = layers.fully_connected
self.separable_conv2d = layers.separable_conv2d
self.concat = tf.concat
示例14: testHijack
# 需要导入模块: from tensorflow.contrib import layers [as 别名]
# 或者: from tensorflow.contrib.layers import separable_conv2d [as 别名]
def testHijack(self, fake_module, has_conv2d, has_separable_conv2d,
has_fully_connected):
# This test verifies that hijacking works with arg scope.
# TODO(e1): Test that all is correct when hijacking a real module.
def name_and_output_fn(name):
# By design there is no add arg_scope here.
def fn(*args, **kwargs):
return (name, args[1], kwargs['scope'])
return fn
function_dict = {
'fully_connected': name_and_output_fn('testing_fully_connected'),
'conv2d': name_and_output_fn('testing_conv2d'),
'separable_conv2d': name_and_output_fn('testing_separable_conv2d')
}
decorator = ops.ConfigurableOps(function_dict=function_dict)
originals = ops.hijack_module_functions(decorator, fake_module)
self.assertEqual('conv2d' in originals, has_conv2d)
self.assertEqual('separable_conv2d' in originals, has_separable_conv2d)
self.assertEqual('fully_connected' in originals, has_fully_connected)
if has_conv2d:
with arg_scope([fake_module.conv2d], num_outputs=2):
out = fake_module.conv2d(
inputs=tf.zeros([10, 3, 3, 4]), scope='test_conv2d')
self.assertAllEqual(['testing_conv2d', 2, 'test_conv2d'], out)
if has_fully_connected:
with arg_scope([fake_module.fully_connected], num_outputs=3):
out = fake_module.fully_connected(
inputs=tf.zeros([10, 4]), scope='test_fc')
self.assertAllEqual(['testing_fully_connected', 3, 'test_fc'], out)
if has_separable_conv2d:
with arg_scope([fake_module.separable_conv2d], num_outputs=4):
out = fake_module.separable_conv2d(
inputs=tf.zeros([10, 3, 3, 4]), scope='test_sep')
self.assertAllEqual(['testing_separable_conv2d', 4, 'test_sep'], out)
示例15: testOpAssumptions
# 需要导入模块: from tensorflow.contrib import layers [as 别名]
# 或者: from tensorflow.contrib.layers import separable_conv2d [as 别名]
def testOpAssumptions(self):
# Verify that op assumptions are true. For example, verify that specific
# inputs are at expected indices.
conv_transpose = layers.conv2d_transpose(
self.batch_norm_op.outputs[0], num_outputs=8, kernel_size=3,
scope='conv_transpose')
layers.separable_conv2d(
conv_transpose, num_outputs=9, kernel_size=3, scope='dwise_conv')
layers.fully_connected(tf.zeros([1, 7]), 10, scope='fc')
g = tf.get_default_graph()
# Verify that FusedBatchNormV3 has gamma as inputs[1].
self.assertEqual('conv1/BatchNorm/gamma/read:0',
self.batch_norm_op.inputs[1].name)
# Verify that Conv2D has weights at expected index.
index = op_handler_util.WEIGHTS_INDEX_DICT[self.conv_op.type]
self.assertEqual('conv1/weights/read:0',
self.conv_op.inputs[index].name)
# Verify that Conv2DBackpropInput has weights at expected index.
conv_transpose_op = g.get_operation_by_name(
'conv_transpose/conv2d_transpose')
index = op_handler_util.WEIGHTS_INDEX_DICT[conv_transpose_op.type]
self.assertEqual('conv_transpose/weights/read:0',
conv_transpose_op.inputs[index].name)
# Verify that DepthwiseConv2dNative has weights at expected index.
depthwise_conv_op = g.get_operation_by_name(
'dwise_conv/separable_conv2d/depthwise')
index = op_handler_util.WEIGHTS_INDEX_DICT[depthwise_conv_op.type]
self.assertEqual('dwise_conv/depthwise_weights/read:0',
depthwise_conv_op.inputs[index].name)
# Verify that MatMul has weights at expected index.
matmul_op = g.get_operation_by_name('fc/MatMul')
index = op_handler_util.WEIGHTS_INDEX_DICT[matmul_op.type]
self.assertEqual('fc/weights/read:0',
matmul_op.inputs[index].name)