当前位置: 首页>>代码示例>>Python>>正文


Python utils.last_dimension方法代码示例

本文整理汇总了Python中tensorflow.contrib.layers.python.layers.utils.last_dimension方法的典型用法代码示例。如果您正苦于以下问题:Python utils.last_dimension方法的具体用法?Python utils.last_dimension怎么用?Python utils.last_dimension使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.contrib.layers.python.layers.utils的用法示例。


在下文中一共展示了utils.last_dimension方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: softmax

# 需要导入模块: from tensorflow.contrib.layers.python.layers import utils [as 别名]
# 或者: from tensorflow.contrib.layers.python.layers.utils import last_dimension [as 别名]
def softmax(logits, scope=None):
  """Performs softmax on Nth dimension of N-dimensional logit tensor.

  For two-dimensional logits this reduces to tf.nn.softmax. The N-th dimension
  needs to have a specified number of elements (number of classes).

  Args:
    logits: N-dimensional `Tensor` with logits, where N > 1.
    scope: Optional scope for variable_scope.

  Returns:
    A `Tensor` with same shape and type as logits.
  """
  # TODO(jrru): Add axis argument which defaults to last dimension.
  with variable_scope.variable_scope(scope, 'softmax', [logits]):
    num_logits = utils.last_dimension(logits.get_shape(), min_rank=2)
    logits_2d = array_ops.reshape(logits, [-1, num_logits])
    predictions = nn.softmax(logits_2d)
    predictions = array_ops.reshape(predictions, array_ops.shape(logits))
    predictions.set_shape(logits.get_shape())
    return predictions 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:23,代码来源:layers.py

示例2: softmax

# 需要导入模块: from tensorflow.contrib.layers.python.layers import utils [as 别名]
# 或者: from tensorflow.contrib.layers.python.layers.utils import last_dimension [as 别名]
def softmax(logits, scope=None):
  """Performs softmax on Nth dimension of N-dimensional logit tensor.

  For two-dimensional logits this reduces to tf.nn.softmax. The N-th dimension
  needs to have a specified number of elements (number of classes).

  Args:
    logits: N-dimensional `Tensor` with logits, where N > 1.
    scope: Optional scope for variable_scope.

  Returns:
    a `Tensor` with same shape and type as logits.
  """
  # TODO(jrru): Add axis argument which defaults to last dimension.
  with variable_scope.variable_scope(scope, 'softmax', [logits]):
    num_logits = utils.last_dimension(logits.get_shape(), min_rank=2)
    logits_2d = array_ops.reshape(logits, [-1, num_logits])
    predictions = nn.softmax(logits_2d)
    predictions = array_ops.reshape(predictions, array_ops.shape(logits))
    predictions.set_shape(logits.get_shape())
    return predictions 
开发者ID:abhisuri97,项目名称:auto-alt-text-lambda-api,代码行数:23,代码来源:layers.py

示例3: bottleneck_IR

# 需要导入模块: from tensorflow.contrib.layers.python.layers import utils [as 别名]
# 或者: from tensorflow.contrib.layers.python.layers.utils import last_dimension [as 别名]
def bottleneck_IR(inputs, depth, depth_bottleneck, stride, rate=1, w_init=None, scope=None, trainable=None):
    with tf.variable_scope(scope, 'bottleneck_v1') as sc:
        depth_in = utils.last_dimension(inputs.outputs.get_shape(), min_rank=4)
        if depth == depth_in:
            shortcut = subsample(inputs, stride, 'shortcut')
        else:
            shortcut = Conv2d(inputs, depth, filter_size=(1, 1), strides=(stride, stride), act=None,
                                        W_init=w_init, b_init=None, name='shortcut_conv', use_cudnn_on_gpu=True)
            shortcut = BatchNormLayer(shortcut, act=tf.identity, is_train=True, trainable=trainable, name='shortcut_bn/BatchNorm')
        # bottleneck layer 1
        residual = BatchNormLayer(inputs, act=tf.identity, is_train=True, trainable=trainable, name='conv1_bn1')
        residual = Conv2d(residual, depth_bottleneck, filter_size=(3, 3), strides=(1, 1), act=None, b_init=None,
                                    W_init=w_init, name='conv1', use_cudnn_on_gpu=True)
        residual = BatchNormLayer(residual, act=tf.identity, is_train=True, trainable=trainable, name='conv1_bn2')
        # bottleneck prelu
        residual = PReluLayer(residual)
        # bottleneck layer 2
        residual = conv2d_same(residual, depth, kernel_size=3, strides=stride, rate=rate, w_init=w_init, scope='conv2', trainable=trainable)
        output = ElementwiseLayer(layer=[shortcut, residual],
                                  combine_fn=tf.add,
                                  name='combine_layer',
                                  act=None)
        return output 
开发者ID:auroua,项目名称:InsightFace_TF,代码行数:25,代码来源:L_Resnet_E_IR_MGPU.py

示例4: bottleneck_IR

# 需要导入模块: from tensorflow.contrib.layers.python.layers import utils [as 别名]
# 或者: from tensorflow.contrib.layers.python.layers.utils import last_dimension [as 别名]
def bottleneck_IR(inputs, depth, depth_bottleneck, stride, rate=1, w_init=None, scope=None, trainable=None):
    with tf.variable_scope(scope, 'bottleneck_v1') as sc:
        depth_in = utils.last_dimension(inputs.outputs.get_shape(), min_rank=4)
        if depth == depth_in:
            shortcut = subsample(inputs, stride, 'shortcut')
        else:
            shortcut = tl.layers.Conv2d(inputs, depth, filter_size=(1, 1), strides=(stride, stride), act=None,
                                        W_init=w_init, b_init=None, name='shortcut_conv', use_cudnn_on_gpu=True)
            shortcut = GroupNormLayer(layer=shortcut, act=tf.identity, name='shortcut_bn/BatchNorm')
        # bottleneck layer 1
        residual = GroupNormLayer(layer=inputs, act=tf.identity, name='conv1_bn1')
        residual = tl.layers.Conv2d(residual, depth_bottleneck, filter_size=(3, 3), strides=(1, 1), act=None, b_init=None,
                                    W_init=w_init, name='conv1', use_cudnn_on_gpu=True)
        residual = GroupNormLayer(layer=residual, act=tf.identity, name='conv1_bn2')
        # bottleneck prelu
        residual = tl.layers.PReluLayer(residual)
        # bottleneck layer 2
        residual = conv2d_same(residual, depth, kernel_size=3, strides=stride, rate=rate, w_init=w_init, scope='conv2', trainable=trainable)
        output = ElementwiseLayer(layer=[shortcut, residual],
                                  combine_fn=tf.add,
                                  name='combine_layer',
                                  act=None)
        return output 
开发者ID:auroua,项目名称:InsightFace_TF,代码行数:25,代码来源:L_Resnet_E_IR_GBN.py

示例5: bottleneck_IR

# 需要导入模块: from tensorflow.contrib.layers.python.layers import utils [as 别名]
# 或者: from tensorflow.contrib.layers.python.layers.utils import last_dimension [as 别名]
def bottleneck_IR(inputs, depth, depth_bottleneck, stride, rate=1, w_init=None, scope=None, trainable=None):
    with tf.variable_scope(scope, 'bottleneck_v1') as sc:
        depth_in = utils.last_dimension(inputs.outputs.get_shape(), min_rank=4)
        if depth == depth_in:
            shortcut = subsample(inputs, stride, 'shortcut')
        else:
            shortcut = tl.layers.Conv2d(inputs, depth, filter_size=(1, 1), strides=(stride, stride), act=None,
                                        W_init=w_init, b_init=None, name='shortcut_conv', use_cudnn_on_gpu=True)
            shortcut = BatchNormLayer(shortcut, act=tf.identity, is_train=True, trainable=trainable, name='shortcut_bn/BatchNorm')
        # bottleneck layer 1
        residual = BatchNormLayer(inputs, act=tf.identity, is_train=True, trainable=trainable, name='conv1_bn1')
        residual = tl.layers.Conv2d(residual, depth_bottleneck, filter_size=(3, 3), strides=(1, 1), act=None, b_init=None,
                                    W_init=w_init, name='conv1', use_cudnn_on_gpu=True)
        residual = BatchNormLayer(residual, act=tf.identity, is_train=True, trainable=trainable, name='conv1_bn2')
        # bottleneck prelu
        residual = tl.layers.PReluLayer(residual)
        # bottleneck layer 2
        residual = conv2d_same(residual, depth, kernel_size=3, strides=stride, rate=rate, w_init=w_init, scope='conv2', trainable=trainable)
        output = ElementwiseLayer(layer=[shortcut, residual],
                                  combine_fn=tf.add,
                                  name='combine_layer',
                                  act=None)
        return output 
开发者ID:auroua,项目名称:InsightFace_TF,代码行数:25,代码来源:L_Resnet_E_IR.py

示例6: bottleneck_IR_SE

# 需要导入模块: from tensorflow.contrib.layers.python.layers import utils [as 别名]
# 或者: from tensorflow.contrib.layers.python.layers.utils import last_dimension [as 别名]
def bottleneck_IR_SE(inputs, depth, depth_bottleneck, stride, rate=1, w_init=None, scope=None, trainable=None):
    with tf.variable_scope(scope, 'bottleneck_v1') as sc:
        depth_in = utils.last_dimension(inputs.outputs.get_shape(), min_rank=4)
        if depth == depth_in:
            shortcut = subsample(inputs, stride, 'shortcut')
        else:
            shortcut = Conv2d(inputs, depth, filter_size=(1, 1), strides=(stride, stride), act=None,
                                        W_init=w_init, b_init=None, name='shortcut_conv', use_cudnn_on_gpu=True)
            shortcut = BatchNormLayer(shortcut, act=tf.identity, is_train=True, trainable=trainable, name='shortcut_bn/BatchNorm')
        # bottleneck layer 1
        residual = BatchNormLayer(inputs, act=tf.identity, is_train=True, trainable=trainable, name='conv1_bn1')
        residual = Conv2d(residual, depth_bottleneck, filter_size=(3, 3), strides=(1, 1), act=None, b_init=None,
                                    W_init=w_init, name='conv1', use_cudnn_on_gpu=True)
        residual = BatchNormLayer(residual, act=tf.identity, is_train=True, trainable=trainable, name='conv1_bn2')
        # bottleneck prelu
        residual = PReluLayer(residual)
        # bottleneck layer 2
        residual = conv2d_same(residual, depth, kernel_size=3, strides=stride, rate=rate, w_init=w_init, scope='conv2', trainable=trainable)
        # squeeze
        squeeze = tl.layers.InputLayer(tf.reduce_mean(residual.outputs, axis=[1, 2]), name='squeeze_layer')
        # excitation
        excitation1 = DenseLayer(squeeze, n_units=int(depth/16.0), act=tf.nn.relu,
                                           W_init=w_init, name='excitation_1')
        # excitation1 = tl.layers.PReluLayer(excitation1, name='excitation_prelu')
        excitation2 = DenseLayer(excitation1, n_units=depth, act=tf.nn.sigmoid,
                                           W_init=w_init, name='excitation_2')
        # scale
        scale = tl.layers.ReshapeLayer(excitation2, shape=[tf.shape(excitation2.outputs)[0], 1, 1, depth], name='excitation_reshape')

        residual_se = ElementwiseLayer(layer=[residual, scale],
                                       combine_fn=tf.multiply,
                                       name='scale_layer',
                                       act=None)

        output = ElementwiseLayer(layer=[shortcut, residual_se],
                                  combine_fn=tf.add,
                                  name='combine_layer',
                                  act=tf.nn.relu)
        return output 
开发者ID:auroua,项目名称:InsightFace_TF,代码行数:41,代码来源:L_Resnet_E_IR_MGPU.py

示例7: bottleneck

# 需要导入模块: from tensorflow.contrib.layers.python.layers import utils [as 别名]
# 或者: from tensorflow.contrib.layers.python.layers.utils import last_dimension [as 别名]
def bottleneck(inputs, depth, depth_bottleneck, stride, rate=1, scope=None):
    with tf.variable_scope(scope, 'bottleneck_v1') as sc:
        depth_in = utils.last_dimension(inputs.outputs.get_shape(), min_rank=4)
        if depth == depth_in:
            shortcut = subsample(inputs, stride, 'shortcut')
        else:
            shortcut = tl.layers.Conv2d(inputs, depth, filter_size=(1, 1), strides=(stride, stride), act=None,
                                        b_init=None, name='shortcut_conv')
            shortcut = tl.layers.BatchNormLayer(shortcut, act=tf.identity, is_train=True, name='shortcut_bn/BatchNorm')
        # bottleneck layer 1
        residual = tl.layers.Conv2d(inputs, depth_bottleneck, filter_size=(1, 1), strides=(1, 1), act=None, b_init=None,
                                    name='conv1')
        residual = tl.layers.BatchNormLayer(residual, act=tf.nn.relu, is_train=True, name='conv1_bn/BatchNorm')

        # bottleneck layer 2
        residual = conv2d_same(residual, depth_bottleneck, kernel_size=3, strides= stride, rate=rate, scope='conv2')

        # bottleneck layer 3
        residual = tl.layers.Conv2d(residual, depth, filter_size=(1, 1), strides=(1, 1), act=None, b_init=None,
                                    name='conv3')
        residual = tl.layers.BatchNormLayer(residual, act=tf.identity, is_train=True, name='conv3_bn/BatchNorm')

        output = ElementwiseLayer(layer=[shortcut, residual],
                                  combine_fn=tf.add,
                                  name='combine_layer',
                                  act=tf.nn.relu)
        return output 
开发者ID:auroua,项目名称:InsightFace_TF,代码行数:29,代码来源:resnet.py

示例8: bottleneck_SE

# 需要导入模块: from tensorflow.contrib.layers.python.layers import utils [as 别名]
# 或者: from tensorflow.contrib.layers.python.layers.utils import last_dimension [as 别名]
def bottleneck_SE(inputs, depth, depth_bottleneck, stride, rate=1, scope=None):
    with tf.variable_scope(scope, 'bottleneck_v1') as sc:
        depth_in = utils.last_dimension(inputs.outputs.get_shape(), min_rank=4)
        if depth == depth_in:
            shortcut = subsample(inputs, stride, 'shortcut')
        else:
            shortcut = tl.layers.Conv2d(inputs, depth, filter_size=(1, 1), strides=(stride, stride), act=None,
                                        b_init=None, name='shortcut_conv')
            shortcut = tl.layers.BatchNormLayer(shortcut, act=tf.identity, is_train=True, name='shortcut_bn/BatchNorm')
        # bottleneck layer 1
        residual = tl.layers.Conv2d(inputs, depth_bottleneck, filter_size=(1, 1), strides=(1, 1), act=None, b_init=None,
                                    name='conv1')
        residual = tl.layers.BatchNormLayer(residual, act=tf.nn.relu, is_train=True, name='conv1_bn/BatchNorm')

        # bottleneck layer 2
        residual = conv2d_same(residual, depth_bottleneck, kernel_size=3, strides= stride, rate=rate, scope='conv2')

        # bottleneck layer 3
        residual = tl.layers.Conv2d(residual, depth, filter_size=(1, 1), strides=(1, 1), act=None, b_init=None,
                                    name='conv3')
        residual = tl.layers.BatchNormLayer(residual, act=tf.identity, is_train=True, name='conv3_bn/BatchNorm')

        # squeeze
        squeeze = tl.layers.InputLayer(tf.reduce_mean(residual.outputs, axis=[1, 2]), name='squeeze_layer')
        # excitation
        excitation1 = tl.layers.DenseLayer(squeeze, n_units=int(depth/16.0), act=tf.nn.relu, name='excitation_1')
        excitation2 = tl.layers.DenseLayer(excitation1, n_units=depth, act=tf.nn.sigmoid, name='excitation_2')
        # scale
        scale = tl.layers.ReshapeLayer(excitation2, shape=[tf.shape(excitation2.outputs)[0], 1, 1, depth], name='excitation_reshape')

        residual_se = ElementwiseLayer(layer=[residual, scale],
                                    combine_fn=tf.multiply,
                                    name='scale_layer',
                                    act=None)

        output = ElementwiseLayer(layer=[shortcut, residual_se],
                                  combine_fn=tf.add,
                                  name='combine_layer',
                                  act=tf.nn.relu)
        return output 
开发者ID:auroua,项目名称:InsightFace_TF,代码行数:42,代码来源:resnet.py

示例9: bottleneck

# 需要导入模块: from tensorflow.contrib.layers.python.layers import utils [as 别名]
# 或者: from tensorflow.contrib.layers.python.layers.utils import last_dimension [as 别名]
def bottleneck(inputs, depth, depth_bottleneck, stride, rate=1, scope=None):
    with tf.variable_scope(scope, 'bottleneck_v1') as sc:
        depth_in = utils.last_dimension(inputs.outputs.get_shape(), min_rank=4)
        if depth == depth_in:
            shortcut = subsample(inputs, stride, 'shortcut')
        else:
            shortcut = tl.layers.Conv2d(inputs, depth, filter_size=(1, 1), strides=(stride, stride), act=None,
                                        b_init=None, name='shortcut_conv')
            shortcut = GroupNormLayer(layer=shortcut, act=tf.identity, name='shortcut_bn/BatchNorm')
        # bottleneck layer 1
        residual = tl.layers.Conv2d(inputs, depth_bottleneck, filter_size=(1, 1), strides=(1, 1), act=None, b_init=None,
                                    name='conv1')
        residual = GroupNormLayer(layer=residual, act=tf.nn.relu, name='conv1_bn/BatchNorm')

        # bottleneck layer 2
        residual = conv2d_same(residual, depth_bottleneck, kernel_size=3, strides= stride, rate=rate, scope='conv2')

        # bottleneck layer 3
        residual = tl.layers.Conv2d(residual, depth, filter_size=(1, 1), strides=(1, 1), act=None, b_init=None,
                                    name='conv3')
        residual = GroupNormLayer(layer=residual, act=tf.identity, name='conv3_bn/BatchNorm',
                                  scale_init=tf.constant_initializer(0.0))
        output = ElementwiseLayer(layer=[shortcut, residual],
                                  combine_fn=tf.add,
                                  name='combine_layer',
                                  act=tf.nn.relu)
        return output 
开发者ID:auroua,项目名称:InsightFace_TF,代码行数:29,代码来源:L_Resnet_E_IR_GBN.py

示例10: bottleneck_IR_SE

# 需要导入模块: from tensorflow.contrib.layers.python.layers import utils [as 别名]
# 或者: from tensorflow.contrib.layers.python.layers.utils import last_dimension [as 别名]
def bottleneck_IR_SE(inputs, depth, depth_bottleneck, stride, rate=1, w_init=None, scope=None, trainable=None):
    with tf.variable_scope(scope, 'bottleneck_v1') as sc:
        depth_in = utils.last_dimension(inputs.outputs.get_shape(), min_rank=4)
        if depth == depth_in:
            shortcut = subsample(inputs, stride, 'shortcut')
        else:
            shortcut = tl.layers.Conv2d(inputs, depth, filter_size=(1, 1), strides=(stride, stride), act=None,
                                        W_init=w_init, b_init=None, name='shortcut_conv', use_cudnn_on_gpu=True)
            shortcut = GroupNormLayer(layer=shortcut, act=tf.identity, name='shortcut_bn/BatchNorm')
        residual = GroupNormLayer(layer=inputs, act=tf.identity, name='conv1_bn1')
        residual = tl.layers.Conv2d(residual, depth_bottleneck, filter_size=(3, 3), strides=(1, 1), act=None, b_init=None,
                                    W_init=w_init, name='conv1', use_cudnn_on_gpu=True)
        residual = GroupNormLayer(layer=residual, act=tf.identity, name='conv1_bn2')
        # bottleneck prelu
        residual = tl.layers.PReluLayer(residual)
        # bottleneck layer 2
        residual = conv2d_same(residual, depth, kernel_size=3, strides=stride, rate=rate, w_init=w_init, scope='conv2', trainable=trainable)
        # squeeze
        squeeze = tl.layers.InputLayer(tf.reduce_mean(residual.outputs, axis=[1, 2]), name='squeeze_layer')
        # excitation
        excitation1 = tl.layers.DenseLayer(squeeze, n_units=int(depth/16.0), act=tf.nn.relu,
                                           W_init=w_init, name='excitation_1')
        # excitation1 = tl.layers.PReluLayer(excitation1, name='excitation_prelu')
        excitation2 = tl.layers.DenseLayer(excitation1, n_units=depth, act=tf.nn.sigmoid,
                                           W_init=w_init, name='excitation_2')
        # scale
        scale = tl.layers.ReshapeLayer(excitation2, shape=[tf.shape(excitation2.outputs)[0], 1, 1, depth], name='excitation_reshape')

        residual_se = ElementwiseLayer(layer=[residual, scale],
                                       combine_fn=tf.multiply,
                                       name='scale_layer',
                                       act=None)

        output = ElementwiseLayer(layer=[shortcut, residual_se],
                                  combine_fn=tf.add,
                                  name='combine_layer',
                                  act=tf.nn.relu)
        return output 
开发者ID:auroua,项目名称:InsightFace_TF,代码行数:40,代码来源:L_Resnet_E_IR_GBN.py

示例11: bottleneck_IR_SE

# 需要导入模块: from tensorflow.contrib.layers.python.layers import utils [as 别名]
# 或者: from tensorflow.contrib.layers.python.layers.utils import last_dimension [as 别名]
def bottleneck_IR_SE(inputs, depth, depth_bottleneck, stride, rate=1, w_init=None, scope=None, trainable=None):
    with tf.variable_scope(scope, 'bottleneck_v1') as sc:
        depth_in = utils.last_dimension(inputs.outputs.get_shape(), min_rank=4)
        if depth == depth_in:
            shortcut = subsample(inputs, stride, 'shortcut')
        else:
            shortcut = tl.layers.Conv2d(inputs, depth, filter_size=(1, 1), strides=(stride, stride), act=None,
                                        W_init=w_init, b_init=None, name='shortcut_conv', use_cudnn_on_gpu=True)
            shortcut = BatchNormLayer(shortcut, act=tf.identity, is_train=True, trainable=trainable, name='shortcut_bn/BatchNorm')
        # bottleneck layer 1
        residual = BatchNormLayer(inputs, act=tf.identity, is_train=True, trainable=trainable, name='conv1_bn1')
        residual = tl.layers.Conv2d(residual, depth_bottleneck, filter_size=(3, 3), strides=(1, 1), act=None, b_init=None,
                                    W_init=w_init, name='conv1', use_cudnn_on_gpu=True)
        residual = BatchNormLayer(residual, act=tf.identity, is_train=True, trainable=trainable, name='conv1_bn2')
        # bottleneck prelu
        residual = tl.layers.PReluLayer(residual)
        # bottleneck layer 2
        residual = conv2d_same(residual, depth, kernel_size=3, strides=stride, rate=rate, w_init=w_init, scope='conv2', trainable=trainable)
        # squeeze
        squeeze = tl.layers.InputLayer(tf.reduce_mean(residual.outputs, axis=[1, 2]), name='squeeze_layer')
        # excitation
        excitation1 = tl.layers.DenseLayer(squeeze, n_units=int(depth/16.0), act=tf.nn.relu,
                                           W_init=w_init, name='excitation_1')
        # excitation1 = tl.layers.PReluLayer(excitation1, name='excitation_prelu')
        excitation2 = tl.layers.DenseLayer(excitation1, n_units=depth, act=tf.nn.sigmoid,
                                           W_init=w_init, name='excitation_2')
        # scale
        scale = tl.layers.ReshapeLayer(excitation2, shape=[tf.shape(excitation2.outputs)[0], 1, 1, depth], name='excitation_reshape')

        residual_se = ElementwiseLayer(layer=[residual, scale],
                                       combine_fn=tf.multiply,
                                       name='scale_layer',
                                       act=None)

        output = ElementwiseLayer(layer=[shortcut, residual_se],
                                  combine_fn=tf.add,
                                  name='combine_layer',
                                  act=tf.nn.relu)
        return output 
开发者ID:auroua,项目名称:InsightFace_TF,代码行数:41,代码来源:L_Resnet_E_IR.py

示例12: preact_conv2d

# 需要导入模块: from tensorflow.contrib.layers.python.layers import utils [as 别名]
# 或者: from tensorflow.contrib.layers.python.layers.utils import last_dimension [as 别名]
def preact_conv2d(
        inputs,
        num_outputs,
        kernel_size,
        stride=1,
        padding='SAME',
        activation_fn=nn.relu,
        normalizer_fn=None,
        normalizer_params=None,
        weights_initializer=initializers.xavier_initializer(),
        weights_regularizer=None,
        reuse=None,
        variables_collections=None,
        outputs_collections=None,
        trainable=True,
        scope=None):
    """Adds a 2D convolution preceded by batch normalization and activation.
    """
    with variable_scope.variable_scope(scope, 'Conv', values=[inputs], reuse=reuse) as sc:
        inputs = ops.convert_to_tensor(inputs)
        dtype = inputs.dtype.base_dtype
        if normalizer_fn:
            normalizer_params = normalizer_params or {}
            inputs = normalizer_fn(inputs, activation_fn=activation_fn, **normalizer_params)
        kernel_h, kernel_w = utils.two_element_tuple(kernel_size)
        stride_h, stride_w = utils.two_element_tuple(stride)
        num_filters_in = utils.last_dimension(inputs.get_shape(), min_rank=4)
        weights_shape = [kernel_h, kernel_w, num_filters_in, num_outputs]
        weights_collections = utils.get_variable_collections(variables_collections, 'weights')
        weights = variables.model_variable('weights',
                                           shape=weights_shape,
                                           dtype=dtype,
                                           initializer=weights_initializer,
                                           regularizer=weights_regularizer,
                                           collections=weights_collections,
                                           trainable=trainable)
        outputs = nn.conv2d(inputs, weights, [1, stride_h, stride_w, 1], padding=padding)
        return utils.collect_named_outputs(outputs_collections, sc.name, outputs) 
开发者ID:rwightman,项目名称:tensorflow-litterbox,代码行数:40,代码来源:preact_conv.py

示例13: bottleneck

# 需要导入模块: from tensorflow.contrib.layers.python.layers import utils [as 别名]
# 或者: from tensorflow.contrib.layers.python.layers.utils import last_dimension [as 别名]
def bottleneck(inputs,
               depth,
               depth_bottleneck,
               stride,
               rate=1,
               outputs_collections=None,
               scope=None):
  """Bottleneck residual unit variant with BN after convolutions.

  This is the original residual unit proposed in [1]. See Fig. 1(a) of [2] for
  its definition. Note that we use here the bottleneck variant which has an
  extra bottleneck layer.

  When putting together two consecutive ResNet blocks that use this unit, one
  should use stride = 2 in the last unit of the first block.

  Args:
    inputs: A tensor of size [batch, height, width, channels].
    depth: The depth of the ResNet unit output.
    depth_bottleneck: The depth of the bottleneck layers.
    stride: The ResNet unit's stride. Determines the amount of downsampling of
      the units output compared to its input.
    rate: An integer, rate for atrous convolution.
    outputs_collections: Collection to add the ResNet unit output.
    scope: Optional variable_scope.

  Returns:
    The ResNet unit's output.
  """
  with variable_scope.variable_scope(scope, 'bottleneck_v1', [inputs]) as sc:
    depth_in = utils.last_dimension(inputs.get_shape(), min_rank=4)
    if depth == depth_in:
      shortcut = resnet_utils.subsample(inputs, stride, 'shortcut')
    else:
      shortcut = layers.conv2d(
          inputs,
          depth, [1, 1],
          stride=stride,
          activation_fn=None,
          scope='shortcut')

    residual = layers.conv2d(
        inputs, depth_bottleneck, [1, 1], stride=1, scope='conv1')
    residual = resnet_utils.conv2d_same(
        residual, depth_bottleneck, 3, stride, rate=rate, scope='conv2')
    residual = layers.conv2d(
        residual, depth, [1, 1], stride=1, activation_fn=None, scope='conv3')

    output = nn_ops.relu(shortcut + residual)

    return utils.collect_named_outputs(outputs_collections, sc.name, output) 
开发者ID:MingtaoGuo,项目名称:Chinese-Character-and-Calligraphic-Image-Processing,代码行数:53,代码来源:resnet_v1.py

示例14: bottleneck

# 需要导入模块: from tensorflow.contrib.layers.python.layers import utils [as 别名]
# 或者: from tensorflow.contrib.layers.python.layers.utils import last_dimension [as 别名]
def bottleneck(inputs,
               depth,
               depth_bottleneck,
               stride,
               rate=1,
               outputs_collections=None,
               scope=None):
  """Bottleneck residual unit variant with BN before convolutions.

  This is the full preactivation residual unit variant proposed in [2]. See
  Fig. 1(b) of [2] for its definition. Note that we use here the bottleneck
  variant which has an extra bottleneck layer.

  When putting together two consecutive ResNet blocks that use this unit, one
  should use stride = 2 in the last unit of the first block.

  Args:
    inputs: A tensor of size [batch, height, width, channels].
    depth: The depth of the ResNet unit output.
    depth_bottleneck: The depth of the bottleneck layers.
    stride: The ResNet unit's stride. Determines the amount of downsampling of
      the units output compared to its input.
    rate: An integer, rate for atrous convolution.
    outputs_collections: Collection to add the ResNet unit output.
    scope: Optional variable_scope.

  Returns:
    The ResNet unit's output.
  """
  with variable_scope.variable_scope(scope, 'bottleneck_v2', [inputs]) as sc:
    depth_in = utils.last_dimension(inputs.get_shape(), min_rank=4)
    preact = layers.batch_norm(
        inputs, activation_fn=nn_ops.relu, scope='preact')
    if depth == depth_in:
      shortcut = resnet_utils.subsample(inputs, stride, 'shortcut')
    else:
      shortcut = layers_lib.conv2d(
          preact,
          depth, [1, 1],
          stride=stride,
          normalizer_fn=None,
          activation_fn=None,
          scope='shortcut')

    residual = layers_lib.conv2d(
        preact, depth_bottleneck, [1, 1], stride=1, scope='conv1')
    residual = resnet_utils.conv2d_same(
        residual, depth_bottleneck, 3, stride, rate=rate, scope='conv2')
    residual = layers_lib.conv2d(
        residual,
        depth, [1, 1],
        stride=1,
        normalizer_fn=None,
        activation_fn=None,
        scope='conv3')

    output = shortcut + residual

    return utils.collect_named_outputs(outputs_collections, sc.name, output) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:61,代码来源:resnet_v2.py

示例15: bottleneck_IR

# 需要导入模块: from tensorflow.contrib.layers.python.layers import utils [as 别名]
# 或者: from tensorflow.contrib.layers.python.layers.utils import last_dimension [as 别名]
def bottleneck_IR(inputs, depth, depth_bottleneck, stride, rate=1, w_init=None, scope=None, trainable=None):
    with tf.variable_scope(scope, 'bottleneck_v1') as sc:
        depth_in = utils.last_dimension(inputs.outputs.get_shape(), min_rank=4)
        if depth == depth_in:
            shortcut = subsample(inputs, stride, 'shortcut')
        else:
            shortcut = tl.layers.Conv2d(inputs, depth, filter_size=(1, 1), strides=(stride, stride), act=None,
                                        W_init=w_init, b_init=None, name='shortcut_conv', use_cudnn_on_gpu=True)
            shortcut.outputs = tf.layers.batch_normalization(inputs=shortcut.outputs,
                                                             momentum=0.9,
                                                             training=trainable,
                                                             renorm=True,
                                                             renorm_clipping={'rmax': 3, 'rmin': 0.3333,
                                                                              'dmax': 5},
                                                             renorm_momentum=0.9,
                                                             name='shortcut_bn/BatchNorm')
        # bottleneck layer 1
        inputs.outputs = tf.layers.batch_normalization(inputs=inputs.outputs,
                                                         momentum=0.9,
                                                         training=trainable,
                                                         renorm=True,
                                                         renorm_clipping={'rmax': 3, 'rmin': 0.3333,
                                                                          'dmax': 5},
                                                         renorm_momentum=0.9,
                                                         name='conv1_bn1')
        residual = tl.layers.Conv2d(inputs, depth_bottleneck, filter_size=(3, 3), strides=(1, 1), act=None, b_init=None,
                                    W_init=w_init, name='conv1', use_cudnn_on_gpu=True)
        residual.outputs = tf.layers.batch_normalization(inputs=residual.outputs,
                                                         momentum=0.9,
                                                         training=trainable,
                                                         renorm=True,
                                                         renorm_clipping={'rmax': 3, 'rmin': 0.3333,
                                                                          'dmax': 5},
                                                         renorm_momentum=0.9,
                                                         name='conv1_bn2')
        # bottleneck prelu
        residual = tl.layers.PReluLayer(residual)
        # bottleneck layer 2
        residual = conv2d_same(residual, depth, kernel_size=3, strides=stride, rate=rate, w_init=w_init, scope='conv2', trainable=trainable)
        output = ElementwiseLayer(layer=[shortcut, residual],
                                  combine_fn=tf.add,
                                  name='combine_layer',
                                  act=None)
        return output 
开发者ID:auroua,项目名称:InsightFace_TF,代码行数:46,代码来源:L_Resnet_E_IR_RBN.py


注:本文中的tensorflow.contrib.layers.python.layers.utils.last_dimension方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。