当前位置: 首页>>代码示例>>Python>>正文


Python utils.constant_value方法代码示例

本文整理汇总了Python中tensorflow.contrib.layers.python.layers.utils.constant_value方法的典型用法代码示例。如果您正苦于以下问题:Python utils.constant_value方法的具体用法?Python utils.constant_value怎么用?Python utils.constant_value使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.contrib.layers.python.layers.utils的用法示例。


在下文中一共展示了utils.constant_value方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_value

# 需要导入模块: from tensorflow.contrib.layers.python.layers import utils [as 别名]
# 或者: from tensorflow.contrib.layers.python.layers.utils import constant_value [as 别名]
def test_value(self):
    for v in [True, False, 1, 0, 1.0]:
      value = utils.constant_value(v)
      self.assertEqual(value, v) 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:6,代码来源:utils_test.py

示例2: test_constant

# 需要导入模块: from tensorflow.contrib.layers.python.layers import utils [as 别名]
# 或者: from tensorflow.contrib.layers.python.layers.utils import constant_value [as 别名]
def test_constant(self):
    for v in [True, False, 1, 0, 1.0]:
      c = tf.constant(v)
      value = utils.constant_value(c)
      self.assertEqual(value, v)
      with self.test_session():
        self.assertEqual(c.eval(), v) 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:9,代码来源:utils_test.py

示例3: test_variable

# 需要导入模块: from tensorflow.contrib.layers.python.layers import utils [as 别名]
# 或者: from tensorflow.contrib.layers.python.layers.utils import constant_value [as 别名]
def test_variable(self):
    for v in [True, False, 1, 0, 1.0]:
      with tf.Graph().as_default() as g, self.test_session(g) as sess:
        x = tf.Variable(v)
        value = utils.constant_value(x)
        self.assertEqual(value, None)
        sess.run(tf.global_variables_initializer())
        self.assertEqual(x.eval(), v) 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:10,代码来源:utils_test.py

示例4: test_placeholder

# 需要导入模块: from tensorflow.contrib.layers.python.layers import utils [as 别名]
# 或者: from tensorflow.contrib.layers.python.layers.utils import constant_value [as 别名]
def test_placeholder(self):
    for v in [True, False, 1, 0, 1.0]:
      p = tf.placeholder(np.dtype(type(v)), [])
      x = tf.identity(p)
      value = utils.constant_value(p)
      self.assertEqual(value, None)
      with self.test_session():
        self.assertEqual(x.eval(feed_dict={p: v}), v) 
开发者ID:tobegit3hub,项目名称:deep_image_model,代码行数:10,代码来源:utils_test.py

示例5: _build_update_ops_variance

# 需要导入模块: from tensorflow.contrib.layers.python.layers import utils [as 别名]
# 或者: from tensorflow.contrib.layers.python.layers.utils import constant_value [as 别名]
def _build_update_ops_variance(self, mean, variance, is_training):
        def build_update_ops():
            update_mean_op = moving_averages.assign_moving_average(
              variable=self._moving_mean,
              value=mean,
              decay=self._decay_rate,
              name="update_moving_mean").op

            update_variance_op = moving_averages.assign_moving_average(
              variable=self._moving_variance,
              value=variance,
              decay=self._decay_rate,
              name="update_moving_variance").op

            return update_mean_op, update_variance_op

        def build_no_ops():
            return (tf.no_op(), tf.no_op())

            # Only make the ops if we know that `is_training=True`, or the
            # value of `is_training` is unknown.
        is_training_const = utils.constant_value(is_training)
        if is_training_const is None or is_training_const:
            update_mean_op, update_variance_op = utils.smart_cond(
                is_training,
                build_update_ops,
                build_no_ops,
            )

          # Every new connection creates a new op which adds its contribution
          # to the running average when ran.
        tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, update_mean_op)
        tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, update_variance_op) 
开发者ID:lightingghost,项目名称:chemopt,代码行数:35,代码来源:batch_norm.py

示例6: _build_update_ops_second_moment

# 需要导入模块: from tensorflow.contrib.layers.python.layers import utils [as 别名]
# 或者: from tensorflow.contrib.layers.python.layers.utils import constant_value [as 别名]
def _build_update_ops_second_moment(self, mean, second_moment, is_training):
        def build_update_ops():
            update_mean_op = moving_averages.assign_moving_average(
              variable=self._moving_mean,
              value=mean,
              decay=self._decay_rate,
              name="update_moving_mean").op

            update_second_moment_op = moving_averages.assign_moving_average(
              variable=self._moving_second_moment,
              value=second_moment,
              decay=self._decay_rate,
              name="update_moving_second_moment").op

            return update_mean_op, update_second_moment_op

        def build_no_ops():
            return (tf.no_op(), tf.no_op())

        is_training_const = utils.constant_value(is_training)
        if is_training_const is None or is_training_const:
            update_mean_op, update_second_moment_op = utils.smart_cond(
                is_training,
                build_update_ops,
                build_no_ops,
                )

        tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, update_mean_op)
        tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, update_second_moment_op) 
开发者ID:lightingghost,项目名称:chemopt,代码行数:31,代码来源:batch_norm.py


注:本文中的tensorflow.contrib.layers.python.layers.utils.constant_value方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。