本文整理汇总了Python中tensorflow.contrib.layers.python.layers.regularizers.l2_regularizer方法的典型用法代码示例。如果您正苦于以下问题:Python regularizers.l2_regularizer方法的具体用法?Python regularizers.l2_regularizer怎么用?Python regularizers.l2_regularizer使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.contrib.layers.python.layers.regularizers
的用法示例。
在下文中一共展示了regularizers.l2_regularizer方法的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: vgg_arg_scope
# 需要导入模块: from tensorflow.contrib.layers.python.layers import regularizers [as 别名]
# 或者: from tensorflow.contrib.layers.python.layers.regularizers import l2_regularizer [as 别名]
def vgg_arg_scope(weight_decay=0.0005):
"""Defines the VGG arg scope.
Args:
weight_decay: The l2 regularization coefficient.
Returns:
An arg_scope.
"""
with arg_scope(
[layers.conv2d, layers_lib.fully_connected],
activation_fn=nn_ops.relu,
weights_regularizer=regularizers.l2_regularizer(weight_decay),
biases_initializer=init_ops.zeros_initializer()):
with arg_scope([layers.conv2d], padding='SAME') as arg_sc:
return arg_sc
示例2: predictron_arg_scope
# 需要导入模块: from tensorflow.contrib.layers.python.layers import regularizers [as 别名]
# 或者: from tensorflow.contrib.layers.python.layers.regularizers import l2_regularizer [as 别名]
def predictron_arg_scope(weight_decay=0.0001,
batch_norm_decay=0.997,
batch_norm_epsilon=1e-5,
batch_norm_scale=True):
batch_norm_params = {
'decay': batch_norm_decay,
'epsilon': batch_norm_epsilon,
'scale': batch_norm_scale,
'updates_collections': tf.GraphKeys.UPDATE_OPS,
}
# Set weight_decay for weights in Conv and FC layers.
with arg_scope(
[layers.conv2d, layers_lib.fully_connected],
weights_regularizer=regularizers.l2_regularizer(weight_decay)):
with arg_scope(
[layers.conv2d],
weights_initializer=initializers.variance_scaling_initializer(),
activation_fn=None,
normalizer_fn=layers_lib.batch_norm,
normalizer_params=batch_norm_params) as sc:
return sc
示例3: vgg_arg_scope
# 需要导入模块: from tensorflow.contrib.layers.python.layers import regularizers [as 别名]
# 或者: from tensorflow.contrib.layers.python.layers.regularizers import l2_regularizer [as 别名]
def vgg_arg_scope(weight_decay=0.0005):
"""Defines the VGG arg scope.
Args:
weight_decay: The l2 regularization coefficient.
Returns:
An arg_scope.
"""
with arg_scope(
[layers.conv2d, layers_lib.fully_connected],
activation_fn=nn_ops.relu,
weights_regularizer=regularizers.l2_regularizer(weight_decay),
biases_initializer=init_ops.zeros_initializer()
):
with arg_scope([layers.conv2d], padding='SAME') as arg_sc:
return arg_sc
示例4: initialise_network
# 需要导入模块: from tensorflow.contrib.layers.python.layers import regularizers [as 别名]
# 或者: from tensorflow.contrib.layers.python.layers.regularizers import l2_regularizer [as 别名]
def initialise_network(self):
num_classes = self.segmentation_param.num_classes
w_regularizer = None
b_regularizer = None
reg_type = self.net_param.reg_type.lower()
decay = self.net_param.decay
if reg_type == 'l2' and decay > 0:
from tensorflow.contrib.layers.python.layers import regularizers
w_regularizer = regularizers.l2_regularizer(decay)
b_regularizer = regularizers.l2_regularizer(decay)
elif reg_type == 'l1' and decay > 0:
from tensorflow.contrib.layers.python.layers import regularizers
w_regularizer = regularizers.l1_regularizer(decay)
b_regularizer = regularizers.l1_regularizer(decay)
self.net = ApplicationNetFactory.create(self.net_param.name)(
num_classes=num_classes,
w_regularizer=w_regularizer,
b_regularizer=b_regularizer,
acti_func=self.net_param.activation_function)
示例5: inception_v2_arg_scope
# 需要导入模块: from tensorflow.contrib.layers.python.layers import regularizers [as 别名]
# 或者: from tensorflow.contrib.layers.python.layers.regularizers import l2_regularizer [as 别名]
def inception_v2_arg_scope(weight_decay=0.00004,
batch_norm_var_collection='moving_vars'):
"""Defines the default InceptionV2 arg scope.
Args:
weight_decay: The weight decay to use for regularizing the model.
batch_norm_var_collection: The name of the collection for the batch norm
variables.
Returns:
An `arg_scope` to use for the inception v3 model.
"""
batch_norm_params = {
# Decay for the moving averages.
'decay': 0.9997,
# epsilon to prevent 0s in variance.
'epsilon': 0.001,
# collection containing update_ops.
'updates_collections': ops.GraphKeys.UPDATE_OPS,
# collection containing the moving mean and moving variance.
'variables_collections': {
'beta': None,
'gamma': None,
'moving_mean': [batch_norm_var_collection],
'moving_variance': [batch_norm_var_collection],
}
}
# Set weight_decay for weights in Conv and FC layers.
with arg_scope(
[layers.conv2d, layers_lib.fully_connected],
weights_regularizer=regularizers.l2_regularizer(weight_decay)):
with arg_scope(
[layers.conv2d],
weights_initializer=initializers.variance_scaling_initializer(),
activation_fn=nn_ops.relu,
normalizer_fn=layers_lib.batch_norm,
normalizer_params=batch_norm_params) as sc:
return sc
开发者ID:MingtaoGuo,项目名称:Chinese-Character-and-Calligraphic-Image-Processing,代码行数:41,代码来源:inception_v2.py
示例6: alexnet_v2_arg_scope
# 需要导入模块: from tensorflow.contrib.layers.python.layers import regularizers [as 别名]
# 或者: from tensorflow.contrib.layers.python.layers.regularizers import l2_regularizer [as 别名]
def alexnet_v2_arg_scope(weight_decay=0.0005):
with arg_scope(
[layers.conv2d, layers_lib.fully_connected],
activation_fn=nn_ops.relu,
biases_initializer=init_ops.constant_initializer(0.1),
weights_regularizer=regularizers.l2_regularizer(weight_decay)):
with arg_scope([layers.conv2d], padding='SAME'):
with arg_scope([layers_lib.max_pool2d], padding='VALID') as arg_sc:
return arg_sc
开发者ID:MingtaoGuo,项目名称:Chinese-Character-and-Calligraphic-Image-Processing,代码行数:11,代码来源:alexnet_v2.py
示例7: overfeat_arg_scope
# 需要导入模块: from tensorflow.contrib.layers.python.layers import regularizers [as 别名]
# 或者: from tensorflow.contrib.layers.python.layers.regularizers import l2_regularizer [as 别名]
def overfeat_arg_scope(weight_decay=0.0005):
with arg_scope(
[layers.conv2d, layers_lib.fully_connected],
activation_fn=nn_ops.relu,
weights_regularizer=regularizers.l2_regularizer(weight_decay),
biases_initializer=init_ops.zeros_initializer()):
with arg_scope([layers.conv2d], padding='SAME'):
with arg_scope([layers_lib.max_pool2d], padding='VALID') as arg_sc:
return arg_sc
示例8: resnet_arg_scope
# 需要导入模块: from tensorflow.contrib.layers.python.layers import regularizers [as 别名]
# 或者: from tensorflow.contrib.layers.python.layers.regularizers import l2_regularizer [as 别名]
def resnet_arg_scope(is_training=True,
weight_decay=cfg.TRAIN.WEIGHT_DECAY,
batch_norm_decay=0.997,
batch_norm_epsilon=1e-5,
batch_norm_scale=True):
batch_norm_params = {
# NOTE 'is_training' here does not work because inside resnet it gets reset:
# https://github.com/tensorflow/models/blob/master/slim/nets/resnet_v1.py#L187
'is_training': False,
'decay': batch_norm_decay,
'epsilon': batch_norm_epsilon,
'scale': batch_norm_scale,
'trainable': cfg.RESNET.BN_TRAIN,
'updates_collections': ops.GraphKeys.UPDATE_OPS
}
with arg_scope(
[slim.conv2d],
weights_regularizer=regularizers.l2_regularizer(weight_decay),
weights_initializer=initializers.variance_scaling_initializer(),
trainable=is_training,
activation_fn=nn_ops.relu,
normalizer_fn=layers.batch_norm,
normalizer_params=batch_norm_params):
with arg_scope([layers.batch_norm], **batch_norm_params) as arg_sc:
return arg_sc
示例9: inception_v1_arg_scope
# 需要导入模块: from tensorflow.contrib.layers.python.layers import regularizers [as 别名]
# 或者: from tensorflow.contrib.layers.python.layers.regularizers import l2_regularizer [as 别名]
def inception_v1_arg_scope(weight_decay=0.00004,
use_batch_norm=True,
batch_norm_var_collection='moving_vars'):
"""Defines the default InceptionV1 arg scope.
Note: Althougth the original paper didn't use batch_norm we found it useful.
Args:
weight_decay: The weight decay to use for regularizing the model.
use_batch_norm: "If `True`, batch_norm is applied after each convolution.
batch_norm_var_collection: The name of the collection for the batch norm
variables.
Returns:
An `arg_scope` to use for the inception v3 model.
"""
batch_norm_params = {
# Decay for the moving averages.
'decay': 0.9997,
# epsilon to prevent 0s in variance.
'epsilon': 0.001,
# collection containing update_ops.
'updates_collections': ops.GraphKeys.UPDATE_OPS,
# collection containing the moving mean and moving variance.
'variables_collections': {
'beta': None,
'gamma': None,
'moving_mean': [batch_norm_var_collection],
'moving_variance': [batch_norm_var_collection],
}
}
if use_batch_norm:
normalizer_fn = layers_lib.batch_norm
normalizer_params = batch_norm_params
else:
normalizer_fn = None
normalizer_params = {}
# Set weight_decay for weights in Conv and FC layers.
with arg_scope(
[layers.conv2d, layers_lib.fully_connected],
weights_regularizer=regularizers.l2_regularizer(weight_decay)):
with arg_scope(
[layers.conv2d],
weights_initializer=initializers.variance_scaling_initializer(),
activation_fn=nn_ops.relu,
normalizer_fn=normalizer_fn,
normalizer_params=normalizer_params) as sc:
return sc
示例10: resnet_arg_scope
# 需要导入模块: from tensorflow.contrib.layers.python.layers import regularizers [as 别名]
# 或者: from tensorflow.contrib.layers.python.layers.regularizers import l2_regularizer [as 别名]
def resnet_arg_scope(is_training=True,
weight_decay=0.0001,
batch_norm_decay=0.997,
batch_norm_epsilon=1e-5,
batch_norm_scale=True):
"""Defines the default ResNet arg scope.
TODO(gpapan): The batch-normalization related default values above are
appropriate for use in conjunction with the reference ResNet models
released at https://github.com/KaimingHe/deep-residual-networks. When
training ResNets from scratch, they might need to be tuned.
Args:
is_training: Whether or not we are training the parameters in the batch
normalization layers of the model. (deprecated)
weight_decay: The weight decay to use for regularizing the model.
batch_norm_decay: The moving average decay when estimating layer activation
statistics in batch normalization.
batch_norm_epsilon: Small constant to prevent division by zero when
normalizing activations by their variance in batch normalization.
batch_norm_scale: If True, uses an explicit `gamma` multiplier to scale the
activations in the batch normalization layer.
Returns:
An `arg_scope` to use for the resnet models.
"""
batch_norm_params = {
'is_training': is_training,
'decay': batch_norm_decay,
'epsilon': batch_norm_epsilon,
'scale': batch_norm_scale,
'updates_collections': ops.GraphKeys.UPDATE_OPS,
}
with arg_scope(
[layers_lib.conv2d],
weights_regularizer=regularizers.l2_regularizer(weight_decay),
weights_initializer=initializers.variance_scaling_initializer(),
activation_fn=nn_ops.relu,
normalizer_fn=layers.batch_norm):
with arg_scope([layers.batch_norm], **batch_norm_params):
# The following implies padding='SAME' for pool1, which makes feature
# alignment easier for dense prediction tasks. This is also used in
# https://github.com/facebook/fb.resnet.torch. However the accompanying
# code of 'Deep Residual Learning for Image Recognition' uses
# padding='VALID' for pool1. You can switch to that choice by setting
# tf.contrib.framework.arg_scope([tf.contrib.layers.max_pool2d], padding='VALID').
with arg_scope([layers.max_pool2d], padding='SAME') as arg_sc:
return arg_sc
示例11: inception_v3_arg_scope
# 需要导入模块: from tensorflow.contrib.layers.python.layers import regularizers [as 别名]
# 或者: from tensorflow.contrib.layers.python.layers.regularizers import l2_regularizer [as 别名]
def inception_v3_arg_scope(weight_decay=0.00004,
stddev=0.1,
batch_norm_var_collection='moving_vars'):
"""Defines the default InceptionV3 arg scope.
Args:
weight_decay: The weight decay to use for regularizing the model.
stddev: The standard deviation of the trunctated normal weight initializer.
batch_norm_var_collection: The name of the collection for the batch norm
variables.
Returns:
An `arg_scope` to use for the inception v3 model.
"""
batch_norm_params = {
# Decay for the moving averages.
'decay': 0.9997,
# epsilon to prevent 0s in variance.
'epsilon': 0.001,
# collection containing update_ops.
'updates_collections': ops.GraphKeys.UPDATE_OPS,
# collection containing the moving mean and moving variance.
'variables_collections': {
'beta': None,
'gamma': None,
'moving_mean': [batch_norm_var_collection],
'moving_variance': [batch_norm_var_collection],
}
}
# Set weight_decay for weights in Conv and FC layers.
with arg_scope(
[layers.conv2d, layers_lib.fully_connected],
weights_regularizer=regularizers.l2_regularizer(weight_decay)):
with arg_scope(
[layers.conv2d],
weights_initializer=init_ops.truncated_normal_initializer(
stddev=stddev),
activation_fn=nn_ops.relu,
normalizer_fn=layers_lib.batch_norm,
normalizer_params=batch_norm_params) as sc:
return sc
示例12: resnet_arg_scope
# 需要导入模块: from tensorflow.contrib.layers.python.layers import regularizers [as 别名]
# 或者: from tensorflow.contrib.layers.python.layers.regularizers import l2_regularizer [as 别名]
def resnet_arg_scope(is_training=True,
weight_decay=0.0001,
batch_norm_decay=0.997,
batch_norm_epsilon=1e-5,
batch_norm_scale=True):
"""Defines the default ResNet arg scope.
TODO(gpapan): The batch-normalization related default values above are
appropriate for use in conjunction with the reference ResNet models
released at https://github.com/KaimingHe/deep-residual-networks. When
training ResNets from scratch, they might need to be tuned.
Args:
is_training: Whether or not we are training the parameters in the batch
normalization layers of the model.
weight_decay: The weight decay to use for regularizing the model.
batch_norm_decay: The moving average decay when estimating layer activation
statistics in batch normalization.
batch_norm_epsilon: Small constant to prevent division by zero when
normalizing activations by their variance in batch normalization.
batch_norm_scale: If True, uses an explicit `gamma` multiplier to scale the
activations in the batch normalization layer.
Returns:
An `arg_scope` to use for the resnet models.
"""
batch_norm_params = {
'is_training': is_training,
'decay': batch_norm_decay,
'epsilon': batch_norm_epsilon,
'scale': batch_norm_scale,
'updates_collections': ops.GraphKeys.UPDATE_OPS,
}
with arg_scope(
[layers_lib.conv2d],
weights_regularizer=regularizers.l2_regularizer(weight_decay),
weights_initializer=initializers.variance_scaling_initializer(),
activation_fn=nn_ops.relu,
normalizer_fn=layers.batch_norm,
normalizer_params=batch_norm_params):
with arg_scope([layers.batch_norm], **batch_norm_params):
# The following implies padding='SAME' for pool1, which makes feature
# alignment easier for dense prediction tasks. This is also used in
# https://github.com/facebook/fb.resnet.torch. However the accompanying
# code of 'Deep Residual Learning for Image Recognition' uses
# padding='VALID' for pool1. You can switch to that choice by setting
# tf.contrib.framework.arg_scope([tf.contrib.layers.max_pool2d], padding='VALID').
with arg_scope([layers.max_pool2d], padding='SAME') as arg_sc:
return arg_sc
示例13: inception_v2_arg_scope
# 需要导入模块: from tensorflow.contrib.layers.python.layers import regularizers [as 别名]
# 或者: from tensorflow.contrib.layers.python.layers.regularizers import l2_regularizer [as 别名]
def inception_v2_arg_scope(weight_decay=0.00004,
batch_norm_var_collection='moving_vars',
batch_norm_decay=0.9997,
batch_norm_epsilon=0.001,
updates_collections=ops.GraphKeys.UPDATE_OPS,
use_fused_batchnorm=True):
"""Defines the default InceptionV2 arg scope.
Args:
weight_decay: The weight decay to use for regularizing the model.
batch_norm_var_collection: The name of the collection for the batch norm
variables.
batch_norm_decay: Decay for batch norm moving average
batch_norm_epsilon: Small float added to variance to avoid division by zero
updates_collections: Collections for the update ops of the layer
use_fused_batchnorm: Enable fused batchnorm.
Returns:
An `arg_scope` to use for the inception v3 model.
"""
batch_norm_params = {
# Decay for the moving averages.
'decay': batch_norm_decay,
# epsilon to prevent 0s in variance.
'epsilon': batch_norm_epsilon,
# collection containing update_ops.
'updates_collections': updates_collections,
# Enable fused batchnorm.
'fused': use_fused_batchnorm,
# collection containing the moving mean and moving variance.
'variables_collections': {
'beta': None,
'gamma': None,
'moving_mean': [batch_norm_var_collection],
'moving_variance': [batch_norm_var_collection],
}
}
# Set weight_decay for weights in Conv and FC layers.
with arg_scope(
[layers.conv2d, layers_lib.fully_connected],
weights_regularizer=regularizers.l2_regularizer(weight_decay)):
with arg_scope(
[layers.conv2d],
weights_initializer=initializers.variance_scaling_initializer(),
activation_fn=nn_ops.relu,
normalizer_fn=layers_lib.batch_norm,
normalizer_params=batch_norm_params) as sc:
return sc