当前位置: 首页>>代码示例>>Python>>正文


Python layers.max_pool2d方法代码示例

本文整理汇总了Python中tensorflow.contrib.layers.max_pool2d方法的典型用法代码示例。如果您正苦于以下问题:Python layers.max_pool2d方法的具体用法?Python layers.max_pool2d怎么用?Python layers.max_pool2d使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.contrib.layers的用法示例。


在下文中一共展示了layers.max_pool2d方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _block_b_reduce

# 需要导入模块: from tensorflow.contrib import layers [as 别名]
# 或者: from tensorflow.contrib.layers import max_pool2d [as 别名]
def _block_b_reduce(net, endpoints, scope='BlockReduceB'):
    # 17 x 17 -> 8 x 8 reduce
    with arg_scope([layers.conv2d, layers.max_pool2d, layers.avg_pool2d], padding='VALID'):
        with tf.variable_scope(scope):
            with tf.variable_scope('Br1_Pool'):
                br1 = layers.max_pool2d(net, [3, 3], stride=2, scope='Pool1_3x3/2')
            with tf.variable_scope('Br2_3x3'):
                br2 = layers.conv2d(net, 192, [1, 1], padding='SAME', scope='Conv1_1x1')
                br2 = layers.conv2d(br2, 192, [3, 3], stride=2, scope='Conv2_3x3/2')
            with tf.variable_scope('Br3_7x7x3'):
                br3 = layers.conv2d(net, 256, [1, 1], padding='SAME', scope='Conv1_1x1')
                br3 = layers.conv2d(br3, 256, [1, 7], padding='SAME', scope='Conv2_1x7')
                br3 = layers.conv2d(br3, 320, [7, 1], padding='SAME', scope='Conv3_7x1')
                br3 = layers.conv2d(br3, 320, [3, 3], stride=2, scope='Conv4_3x3/2')
            net = tf.concat(3, [br1, br2, br3], name='Concat1')
            endpoints[scope] = net
            print('%s output shape: %s' % (scope, net.get_shape()))
    return net 
开发者ID:rwightman,项目名称:tensorflow-litterbox,代码行数:20,代码来源:build_inception_v4.py

示例2: _extract_features

# 需要导入模块: from tensorflow.contrib import layers [as 别名]
# 或者: from tensorflow.contrib.layers import max_pool2d [as 别名]
def _extract_features(self, preprocessed_inputs):
    """Extract features
    Args:
      preprocessed_inputs: float32 tensor of shape [batch_size, image_height, image_width, 3]
    Return:
      feature_maps: a list of extracted feature maps
    """
    with arg_scope([conv2d], kernel_size=3, activation_fn=tf.nn.relu), \
         arg_scope([max_pool2d], kernel_size=2, stride=2):
      conv1 = conv2d(preprocessed_inputs, 32, scope='conv1') # 64
      pool1 = max_pool2d(conv1, scope='pool1')
      conv2 = conv2d(pool1, 64, scope='conv2')  # 32
      pool2 = max_pool2d(conv2, scope='pool2')
      conv3 = conv2d(pool2, 128, scope='conv3')  # 16
      pool3 = max_pool2d(conv3, scope='pool3')
      conv4 = conv2d(pool3, 256, scope='conv4')  # 8
      pool4 = max_pool2d(conv4, scope='pool4')
      conv5 = conv2d(pool4, 256, scope='conv5')  # 4
      pool5 = max_pool2d(conv5, scope='pool5')
      conv6 = conv2d(pool5, 256, scope='conv6')  # 2
      feature_maps_dict = {
        'conv1': conv1, 'conv2': conv2, 'conv3': conv3,
        'conv4': conv4, 'conv5': conv5, 'conv6': conv6 }
    return feature_maps_dict 
开发者ID:bgshih,项目名称:aster,代码行数:26,代码来源:stn_convnet.py

示例3: _extract_features

# 需要导入模块: from tensorflow.contrib import layers [as 别名]
# 或者: from tensorflow.contrib.layers import max_pool2d [as 别名]
def _extract_features(self, preprocessed_inputs):
    """Extract features
    Args:
      preprocessed_inputs: float32 tensor of shape [batch_size, image_height, image_width, 3]
    Return:
      feature_maps: a list of extracted feature maps
    """
    with arg_scope([conv2d], kernel_size=3, padding='SAME', stride=1), \
         arg_scope([max_pool2d], stride=2):
      conv1 = conv2d(preprocessed_inputs, 64, scope='conv1')
      pool1 = max_pool2d(conv1, 2, scope='pool1')
      conv2 = conv2d(pool1, 128, scope='conv2')
      pool2 = max_pool2d(conv2, 2, scope='pool2')
      conv3 = conv2d(pool2, 256, scope='conv3')
      conv4 = conv2d(conv3, 256, scope='conv4')
      pool4 = max_pool2d(conv4, 2, stride=[2, 1], scope='pool4')
      conv5 = conv2d(pool4, 512, scope='conv5')
      conv6 = conv2d(conv5, 512, scope='conv6')
      pool6 = max_pool2d(conv6, 2, stride=[2, 1], scope='pool6')
      conv7 = conv2d(pool6, 512, kernel_size=[2, 1], padding='VALID', scope='conv7')
      feature_maps_dict = {
        'conv1': conv1, 'conv2': conv2, 'conv3': conv3, 'conv4': conv4,
        'conv5': conv5, 'conv6': conv6, 'conv7': conv7}
    return feature_maps_dict 
开发者ID:bgshih,项目名称:aster,代码行数:26,代码来源:crnn_net.py

示例4: _squeezenet

# 需要导入模块: from tensorflow.contrib import layers [as 别名]
# 或者: from tensorflow.contrib.layers import max_pool2d [as 别名]
def _squeezenet(images, num_classes=1000, data_format='NCHW'):
        net = conv2d(images, 96, [2, 2], stride=2, scope='conv1')
        net = max_pool2d(net, [3, 3], stride=2, scope='maxpool1')
        net = fire_module(net, 16, 64, scope='fire2', data_format=data_format)
        net = fire_module(net, 16, 64, scope='fire3', data_format=data_format)
        net = fire_module(net, 32, 128, scope='fire4', data_format=data_format)
        net = max_pool2d(net, [3, 3], stride=2, scope='maxpool4')
        net = fire_module(net, 32, 128, scope='fire5', data_format=data_format)
        net = fire_module(net, 48, 192, scope='fire6', data_format=data_format)
        net = fire_module(net, 48, 192, scope='fire7', data_format=data_format)
        net = fire_module(net, 64, 256, scope='fire8', data_format=data_format)
        net = max_pool2d(net, [3, 3], stride=2, scope='maxpool8')
        net = fire_module(net, 64, 256, scope='fire9', data_format=data_format)
        net = conv2d(net, num_classes, [1, 1], stride=1, scope='conv10')
        net = avg_pool2d(net, [13, 13], stride=1, scope='avgpool10')

        squeeze_axes = [2, 3] if data_format == 'NCHW' else [1, 2]
        logits = tf.squeeze(net, squeeze_axes, name='logits')
        return logits 
开发者ID:microsoft,项目名称:DirectML,代码行数:21,代码来源:squeezenet.py

示例5: _squeezenet

# 需要导入模块: from tensorflow.contrib import layers [as 别名]
# 或者: from tensorflow.contrib.layers import max_pool2d [as 别名]
def _squeezenet(images, num_classes=1000):
        net = conv2d(images, 96, [7, 7], stride=2, scope='conv1')
        net = max_pool2d(net, [3, 3], stride=2, scope='maxpool1')
        net = fire_module(net, 16, 64, scope='fire2')
        net = fire_module(net, 16, 64, scope='fire3')
        net = fire_module(net, 32, 128, scope='fire4')
        net = max_pool2d(net, [3, 3], stride=2, scope='maxpool4')
        net = fire_module(net, 32, 128, scope='fire5')
        net = fire_module(net, 48, 192, scope='fire6')
        net = fire_module(net, 48, 192, scope='fire7')
        net = fire_module(net, 64, 256, scope='fire8')
        net = max_pool2d(net, [3, 3], stride=2, scope='maxpool8')
        net = fire_module(net, 64, 256, scope='fire9')
        net = conv2d(net, num_classes, [1, 1], stride=1, scope='conv10')
        net = avg_pool2d(net, [13, 13], stride=1, scope='avgpool10')
        logits = tf.squeeze(net, [2], name='logits')
        return logits 
开发者ID:vonclites,项目名称:squeezenet,代码行数:19,代码来源:squeezenet.py

示例6: subsample

# 需要导入模块: from tensorflow.contrib import layers [as 别名]
# 或者: from tensorflow.contrib.layers import max_pool2d [as 别名]
def subsample(inputs, factor, scope=None):
  """Subsamples the input along the spatial dimensions.

  Args:
    inputs: A `Tensor` of size [batch, height_in, width_in, channels].
    factor: The subsampling factor.
    scope: Optional variable_scope.

  Returns:
    output: A `Tensor` of size [batch, height_out, width_out, channels] with the
      input, either intact (if factor == 1) or subsampled (if factor > 1).
  """
  if factor == 1:
    return inputs
  else:
    return layers.max_pool2d(inputs, [1, 1], stride=factor, scope=scope) 
开发者ID:HiKapok,项目名称:X-Detector,代码行数:18,代码来源:slim_resnet_utils.py

示例7: max_pool2d

# 需要导入模块: from tensorflow.contrib import layers [as 别名]
# 或者: from tensorflow.contrib.layers import max_pool2d [as 别名]
def max_pool2d(self, *args, **kwargs):
    return self._pass_through_mask(
        self._function_dict['max_pool2d'], *args, **kwargs) 
开发者ID:google-research,项目名称:morph-net,代码行数:5,代码来源:configurable_ops.py

示例8: testCascadedGrouping

# 需要导入模块: from tensorflow.contrib import layers [as 别名]
# 或者: from tensorflow.contrib.layers import max_pool2d [as 别名]
def testCascadedGrouping(self):
    inputs = tf.zeros([6, 8, 8, 10], name='prev')
    with arg_scope(
        [layers.conv2d, layers.max_pool2d],
        kernel_size=1,
        stride=1,
        padding='SAME'):
      net = layers.conv2d(inputs, 17, scope='conv/input')

      first = layers.conv2d(net, num_outputs=17, scope='conv/first')
      add_0 = tf.add(first, net, 'Add/first')  # So conv/first must be 17.
      second = layers.conv2d(add_0, num_outputs=17, scope='conv/second')
      out = tf.add(net, second, 'Add/second')  # So conv/second must be 17.

    # Instantiate OpRegularizerManager.
    op_handler_dict = self._default_op_handler_dict
    op_handler_dict['Conv2D'] = IndexConvSourceOpHandler()
    op_reg_manager = orm.OpRegularizerManager([out.op], op_handler_dict)

    grouped_names = [
        [op_slice.op.name for op_slice in group.op_slices]
        for group in op_reg_manager._op_group_dict.values()]
    expected = set([
        'conv/second/Conv2D', 'Add/second', 'conv/first/Conv2D',
        'conv/input/Conv2D', 'Add/first'
    ])
    groups = []
    for group in grouped_names:
      filtered = []
      for op_name in group:
        if '/Conv2D' in op_name or 'Add/' in op_name:
          filtered.append(op_name)
      if filtered:
        groups.append(set(filtered))
        if DEBUG_PRINTS:
          print('Group Found = ', filtered)
    self.assertIn(expected, groups) 
开发者ID:google-research,项目名称:morph-net,代码行数:39,代码来源:op_regularizer_manager_test.py

示例9: _block_a

# 需要导入模块: from tensorflow.contrib import layers [as 别名]
# 或者: from tensorflow.contrib.layers import max_pool2d [as 别名]
def _block_a(net, endpoints, d=64, scope='BlockA'):
    with tf.variable_scope(scope):
        net = endpoints[scope+'/Conv1'] = layers.conv2d(net, d, [3, 3], scope='Conv1_3x3')
        net = endpoints[scope+'/Conv2'] = layers.conv2d(net, d, [3, 3], scope='Conv2_3x3')
        net = endpoints[scope+'/Pool1'] = layers.max_pool2d(net, [2, 2], stride=2, scope='Pool1_2x2/2')
    return net 
开发者ID:rwightman,项目名称:tensorflow-litterbox,代码行数:8,代码来源:build_vgg.py

示例10: _block_b

# 需要导入模块: from tensorflow.contrib import layers [as 别名]
# 或者: from tensorflow.contrib.layers import max_pool2d [as 别名]
def _block_b(net, endpoints, d=256, scope='BlockB'):
    with tf.variable_scope(scope):
        net = endpoints[scope+'/Conv1'] = layers.conv2d(net, d, [3, 3], scope='Conv1_3x3')
        net = endpoints[scope+'/Conv2'] = layers.conv2d(net, d, [3, 3], scope='Conv2_3x3')
        net = endpoints[scope+'/Conv3'] = layers.conv2d(net, d, [3, 3], scope='Conv3_3x3')
        net = endpoints[scope+'/Pool1'] = layers.max_pool2d(net, [2, 2], stride=2, scope='Pool1_2x2/2')
    return net 
开发者ID:rwightman,项目名称:tensorflow-litterbox,代码行数:9,代码来源:build_vgg.py

示例11: _block_c

# 需要导入模块: from tensorflow.contrib import layers [as 别名]
# 或者: from tensorflow.contrib.layers import max_pool2d [as 别名]
def _block_c(net, endpoints, d=256, scope='BlockC'):
    with tf.variable_scope(scope):
        net = endpoints[scope+'/Conv1'] = layers.conv2d(net, d, [3, 3], scope='Conv1_3x3')
        net = endpoints[scope+'/Conv2'] = layers.conv2d(net, d, [3, 3], scope='Conv2_3x3')
        net = endpoints[scope+'/Conv3'] = layers.conv2d(net, d, [3, 3], scope='Conv3_3x3')
        net = endpoints[scope+'/Conv4'] = layers.conv2d(net, d, [3, 3], scope='Conv4_3x3')
        net = endpoints[scope+'/Pool1'] = layers.max_pool2d(net, [2, 2], stride=2, scope='Pool1_2x2/2')
    return net 
开发者ID:rwightman,项目名称:tensorflow-litterbox,代码行数:10,代码来源:build_vgg.py

示例12: _build_vgg16

# 需要导入模块: from tensorflow.contrib import layers [as 别名]
# 或者: from tensorflow.contrib.layers import max_pool2d [as 别名]
def _build_vgg16(
        inputs,
        num_classes=1000,
        dropout_keep_prob=0.5,
        is_training=True,
        scope=''):
    """Blah"""

    endpoints = {}
    with tf.name_scope(scope, 'vgg16', [inputs]):
        with arg_scope(
                [layers.batch_norm, layers.dropout], is_training=is_training):
            with arg_scope(
                    [layers.conv2d, layers.max_pool2d], 
                    stride=1,
                    padding='SAME'):

                net = _block_a(inputs, endpoints, d=64, scope='Scale1')
                net = _block_a(net, endpoints, d=128, scope='Scale2')
                net = _block_b(net, endpoints, d=256, scope='Scale3')
                net = _block_b(net, endpoints, d=512, scope='Scale4')
                net = _block_b(net, endpoints, d=512, scope='Scale5')
                logits = _block_output(net, endpoints, num_classes, dropout_keep_prob)

                endpoints['Predictions'] = tf.nn.softmax(logits, name='Predictions')
                return logits, endpoints 
开发者ID:rwightman,项目名称:tensorflow-litterbox,代码行数:28,代码来源:build_vgg.py

示例13: _build_vgg19

# 需要导入模块: from tensorflow.contrib import layers [as 别名]
# 或者: from tensorflow.contrib.layers import max_pool2d [as 别名]
def _build_vgg19(
        inputs,
        num_classes=1000,
        dropout_keep_prob=0.5,
        is_training=True,
        scope=''):
    """Blah"""

    endpoints = {}
    with tf.name_scope(scope, 'vgg19', [inputs]):
        with arg_scope(
                [layers.batch_norm, layers.dropout], is_training=is_training):
            with arg_scope(
                    [layers.conv2d, layers.max_pool2d],
                    stride=1,
                    padding='SAME'):

                net = _block_a(inputs, endpoints, d=64, scope='Scale1')
                net = _block_a(net, endpoints, d=128, scope='Scale2')
                net = _block_c(net, endpoints, d=256, scope='Scale3')
                net = _block_c(net, endpoints, d=512, scope='Scale4')
                net = _block_c(net, endpoints, d=512, scope='Scale5')
                logits = _block_output(net, endpoints, num_classes, dropout_keep_prob)

                endpoints['Predictions'] = tf.nn.softmax(logits, name='Predictions')
                return logits, endpoints 
开发者ID:rwightman,项目名称:tensorflow-litterbox,代码行数:28,代码来源:build_vgg.py

示例14: _block_a_reduce

# 需要导入模块: from tensorflow.contrib import layers [as 别名]
# 或者: from tensorflow.contrib.layers import max_pool2d [as 别名]
def _block_a_reduce(net, endpoints, k=192, l=224, m=256, n=384, scope='BlockReduceA'):
    # 35 x 35 -> 17 x 17 reduce
    # inception-v4: k=192, l=224, m=256, n=384
    # inception-resnet-v1: k=192, l=192, m=256, n=384
    # inception-resnet-v2: k=256, l=256, m=384, n=384
    # default padding = VALID
    # default stride = 1
    with arg_scope([layers.conv2d, layers.max_pool2d, layers.avg_pool2d], padding='VALID'):
        with tf.variable_scope(scope):
            with tf.variable_scope('Br1_Pool'):
                br1 = layers.max_pool2d(net, [3, 3], stride=2, scope='Pool1_3x3/2')
                # 17 x 17 x input
            with tf.variable_scope('Br2_3x3'):
                br2 = layers.conv2d(net, n, [3, 3], stride=2, scope='Conv1_3x3/2')
                # 17 x 17 x n
            with tf.variable_scope('Br3_3x3Dbl'):
                br3 = layers.conv2d(net, k, [1, 1], padding='SAME', scope='Conv1_1x1')
                br3 = layers.conv2d(br3, l, [3, 3], padding='SAME', scope='Conv2_3x3')
                br3 = layers.conv2d(br3, m, [3, 3], stride=2, scope='Conv3_3x3/2')
                # 17 x 17 x m
            net = tf.concat(3, [br1, br2, br3], name='Concat1')
            # 17 x 17 x input + n + m
            # 1024 for v4 (384 + 384 + 256)
            # 896 for res-v1 (256 + 384 +256)
            # 1152 for res-v2 (384 + 384 + 384)
            endpoints[scope] = net
            print('%s output shape: %s' % (scope, net.get_shape()))
    return net 
开发者ID:rwightman,项目名称:tensorflow-litterbox,代码行数:30,代码来源:build_inception_v4.py

示例15: _block_stem_res

# 需要导入模块: from tensorflow.contrib import layers [as 别名]
# 或者: from tensorflow.contrib.layers import max_pool2d [as 别名]
def _block_stem_res(net, endpoints, scope='Stem'):
    # Simpler _stem for inception-resnet-v1 network
    # NOTE observe endpoints of first 3 layers
    # default padding = VALID
    # default stride = 1
    with arg_scope([layers.conv2d, layers.max_pool2d, layers.avg_pool2d], padding='VALID'):
        with tf.variable_scope(scope):
            # 299 x 299 x 3
            net = layers.conv2d(net, 32, [3, 3], stride=2, scope='Conv1_3x3/2')
            endpoints[scope + '/Conv1'] = net
            # 149 x 149 x 32
            net = layers.conv2d(net, 32, [3, 3], scope='Conv2_3x3')
            endpoints[scope + '/Conv2'] = net
            # 147 x 147 x 32
            net = layers.conv2d(net, 64, [3, 3], padding='SAME', scope='Conv3_3x3')
            endpoints[scope + '/Conv3'] = net
            # 147 x 147 x 64
            net = layers.max_pool2d(net, [3, 3], stride=2, scope='Pool1_3x3/2')
            # 73 x 73 x 64
            net = layers.conv2d(net, 80, [1, 1], padding='SAME', scope='Conv4_1x1')
            # 73 x 73 x 80
            net = layers.conv2d(net, 192, [3, 3], scope='Conv5_3x3')
            # 71 x 71 x 192
            net = layers.conv2d(net, 256, [3, 3], stride=2, scope='Conv6_3x3/2')
            # 35 x 35 x 256
            endpoints[scope] = net
            print('%s output shape: %s' % (scope, net.get_shape()))
    return net 
开发者ID:rwightman,项目名称:tensorflow-litterbox,代码行数:30,代码来源:build_inception_v4.py


注:本文中的tensorflow.contrib.layers.max_pool2d方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。