当前位置: 首页>>代码示例>>Python>>正文


Python layers.linear方法代码示例

本文整理汇总了Python中tensorflow.contrib.layers.linear方法的典型用法代码示例。如果您正苦于以下问题:Python layers.linear方法的具体用法?Python layers.linear怎么用?Python layers.linear使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.contrib.layers的用法示例。


在下文中一共展示了layers.linear方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _get_filter

# 需要导入模块: from tensorflow.contrib import layers [as 别名]
# 或者: from tensorflow.contrib.layers import linear [as 别名]
def _get_filter(self, data, grid, scope=None):
        """ Generate an attention filter """
        with tf.variable_scope(scope, 'filter', [data]):
            x_offset, y_offset, log_stride, log_scale, log_gamma = tf.split(
                layers.linear(data, 5, scope='parameters'), 5, axis=1)

            center = self._get_center(grid, (x_offset, y_offset), tf.exp(log_stride))

            scale = tf.expand_dims(tf.maximum(tf.exp(log_scale), self.epsilon), -1)
            filter_x = 1 + tf.square((self.data_x - center[0]) / tf.maximum(scale, self.epsilon))
            filter_y = 1 + tf.square((self.data_y - center[1]) / tf.maximum(scale, self.epsilon))

            filter_x = tf.reciprocal(tf.maximum(pi * scale * filter_x, self.epsilon))
            filter_y = tf.reciprocal(tf.maximum(pi * scale * filter_y, self.epsilon))

            return filter_x, filter_y, tf.exp(log_gamma) 
开发者ID:dojoteef,项目名称:glas,代码行数:18,代码来源:attention.py

示例2: approximate_posterior

# 需要导入模块: from tensorflow.contrib import layers [as 别名]
# 或者: from tensorflow.contrib.layers import linear [as 别名]
def approximate_posterior(self, tensor, scope='posterior'):
        """ Calculate the approximate posterior given the tensor """
        # Generate mu and sigma of the Gaussian for the approximate posterior
        with tf.variable_scope(scope, 'posterior', [tensor]):
            mean = layers.linear(tensor, self.sample_size, scope='mean')

            # Use the log of sigma for numerical stability
            log_sigma = layers.linear(tensor, self.sample_size, scope='log_sigma')

            # Create the Gaussian distribution
            sigma = tf.exp(log_sigma)
            posterior = distributions.Normal(mean, sigma, name='posterior')

            self.collect_named_outputs(posterior.loc)
            self.collect_named_outputs(posterior.scale)
            self.posteriors.append(posterior)

            return posterior 
开发者ID:dojoteef,项目名称:glas,代码行数:20,代码来源:sample.py

示例3: discriminator_res

# 需要导入模块: from tensorflow.contrib import layers [as 别名]
# 或者: from tensorflow.contrib.layers import linear [as 别名]
def discriminator_res(H, opt, dropout, prefix='', num_outputs=1, is_reuse=None):
    # last layer must be linear
    # H = tf.squeeze(H, [1,2])
    # pdb.set_trace()
    biasInit = tf.constant_initializer(0.001, dtype=tf.float32)
    H_dis_0 = layers.fully_connected(tf.nn.dropout(H, keep_prob=dropout), num_outputs=opt.embed_size,
                                   biases_initializer=biasInit, activation_fn=None, scope=prefix + 'dis_1',
                                   reuse=is_reuse)
    H_dis_0n = tf.nn.relu(H_dis_0)                               
    H_dis_1 = layers.fully_connected(tf.nn.dropout(H_dis_0n, keep_prob=dropout), num_outputs=opt.embed_size,
                                   biases_initializer=biasInit, activation_fn=None, scope=prefix + 'dis_2',
                                   reuse=is_reuse)
    H_dis_1n = tf.nn.relu(H_dis_1) + H_dis_0
    H_dis_2 = layers.fully_connected(tf.nn.dropout(H_dis_1n, keep_prob=dropout), num_outputs=opt.embed_size,
                                   biases_initializer=biasInit, activation_fn=None, scope=prefix + 'dis_3',
                                   reuse=is_reuse)
    H_dis_2n = tf.nn.relu(H_dis_2) + H_dis_1
    H_dis_3 = layers.fully_connected(tf.nn.dropout(H_dis_2n, keep_prob=dropout), num_outputs=opt.embed_size,
                                   biases_initializer=biasInit, activation_fn=None, scope=prefix + 'dis_4',
                                   reuse=is_reuse)

    logits = layers.linear(tf.nn.dropout(H_dis_3, keep_prob=dropout), num_outputs=num_outputs,
                           biases_initializer=biasInit, scope=prefix + 'dis_10', reuse=is_reuse)
    return logits 
开发者ID:yyht,项目名称:BERT,代码行数:26,代码来源:swem_utils.py

示例4: write

# 需要导入模块: from tensorflow.contrib import layers [as 别名]
# 或者: from tensorflow.contrib.layers import linear [as 别名]
def write(self, data):
        """ Do a write given the data """
        return layers.linear(data, self.output_size, scope='write') 
开发者ID:dojoteef,项目名称:glas,代码行数:5,代码来源:attention.py

示例5: read

# 需要导入模块: from tensorflow.contrib import layers [as 别名]
# 或者: from tensorflow.contrib.layers import linear [as 别名]
def read(self, data, focus):
        """ Do a read given the data """
        focus = layers.linear(focus, data.get_shape().as_list()[-1])
        focused = tf.expand_dims(self.focus_fn(focus, name='focus'), 1)

        return layers.flatten(focused * data) 
开发者ID:dojoteef,项目名称:glas,代码行数:8,代码来源:attention.py

示例6: read_multiple

# 需要导入模块: from tensorflow.contrib import layers [as 别名]
# 或者: from tensorflow.contrib.layers import linear [as 别名]
def read_multiple(self, data_list, focus):
        """ Do a filtered read for multiple tensors using the same focus """
        focus = layers.linear(focus, data_list[0].get_shape().as_list()[-1])
        focused = tf.expand_dims(self.focus_fn(focus, name='focus'), 1)

        focus_list = []
        for data in data_list:
            focus_list.append(layers.flatten(focused * data))

        return tf.concat(focus_list, 1) 
开发者ID:dojoteef,项目名称:glas,代码行数:12,代码来源:attention.py

示例7: _get_key

# 需要导入模块: from tensorflow.contrib import layers [as 别名]
# 或者: from tensorflow.contrib.layers import linear [as 别名]
def _get_key(self, focus):
        """ Get the key for the data """
        beta = layers.linear(focus, 1)
        key = layers.linear(focus, self.shape[1])

        return beta, tf.expand_dims(tf.nn.l2_normalize(key, -1), -1) 
开发者ID:dojoteef,项目名称:glas,代码行数:8,代码来源:attention.py

示例8: regression_head

# 需要导入模块: from tensorflow.contrib import layers [as 别名]
# 或者: from tensorflow.contrib.layers import linear [as 别名]
def regression_head(label_name=None,
                    weight_column_name=None,
                    label_dimension=1,
                    enable_centered_bias=False,
                    head_name=None):
  """Creates a `Head` for linear regression.

  Args:
    label_name: String, name of the key in label dict. Can be null if label
        is a tensor (single headed models).
    weight_column_name: A string defining feature column name representing
      weights. It is used to down weight or boost examples during training. It
      will be multiplied by the loss of the example.
    label_dimension: Number of regression labels per example. This is the size
      of the last dimension of the labels `Tensor` (typically, this has shape
      `[batch_size, label_dimension]`).
    enable_centered_bias: A bool. If True, estimator will learn a centered
      bias variable for each class. Rest of the model structure learns the
      residual after centered bias.
    head_name: name of the head. If provided, predictions, summary and metrics
      keys will be suffixed by `"/" + head_name` and the default variable scope
      will be `head_name`.

  Returns:
    An instance of `Head` for linear regression.
  """
  return _RegressionHead(
      label_name=label_name,
      weight_column_name=weight_column_name,
      label_dimension=label_dimension,
      enable_centered_bias=enable_centered_bias,
      head_name=head_name,
      loss_fn=_mean_squared_loss,
      link_fn=array_ops.identity) 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:36,代码来源:head.py

示例9: _logits

# 需要导入模块: from tensorflow.contrib import layers [as 别名]
# 或者: from tensorflow.contrib.layers import linear [as 别名]
def _logits(logits_input, logits, logits_dimension):
  """Validate logits args, and create `logits` if necessary.

  Exactly one of `logits_input` and `logits` must be provided.

  Args:
    logits_input: `Tensor` input to `logits`.
    logits: `Tensor` output.
    logits_dimension: Integer, last dimension of `logits`. This is used to
      create `logits` from `logits_input` if `logits` is `None`; otherwise, it's
      used to validate `logits`.

  Returns:
    `logits` `Tensor`.

  Raises:
    ValueError: if neither or both of `logits` and `logits_input` are supplied.
  """
  if (logits_dimension is None) or (logits_dimension < 1):
    raise ValueError("Invalid logits_dimension %s." % logits_dimension)

  # If not provided, create logits.
  if logits is None:
    if logits_input is None:
      raise ValueError("Neither logits nor logits_input supplied.")
    return layers_lib.linear(logits_input, logits_dimension, scope="logits")

  if logits_input is not None:
    raise ValueError("Both logits and logits_input supplied.")

  logits = ops.convert_to_tensor(logits, name="logits")
  logits_dims = logits.get_shape().dims
  if logits_dims is not None:
    logits_dims[-1].assert_is_compatible_with(logits_dimension)

  return logits 
开发者ID:ryfeus,项目名称:lambda-packs,代码行数:38,代码来源:head.py

示例10: discriminator_1layer

# 需要导入模块: from tensorflow.contrib import layers [as 别名]
# 或者: from tensorflow.contrib.layers import linear [as 别名]
def discriminator_1layer(H, opt, dropout, prefix='', num_outputs=1, is_reuse=None):
    # last layer must be linear
    H = tf.squeeze(H)
    biasInit = tf.constant_initializer(0.001, dtype=tf.float32)
    H_dis = layers.fully_connected(tf.nn.dropout(H, keep_prob=dropout), num_outputs=opt.H_dis,
                                   biases_initializer=biasInit, activation_fn=tf.nn.relu, scope=prefix + 'dis_1',
                                   reuse=is_reuse)
    return H_dis 
开发者ID:yyht,项目名称:BERT,代码行数:10,代码来源:swem_utils.py

示例11: discriminator_0layer

# 需要导入模块: from tensorflow.contrib import layers [as 别名]
# 或者: from tensorflow.contrib.layers import linear [as 别名]
def discriminator_0layer(H, opt, dropout, prefix='', num_outputs=1, is_reuse=None):
    H = tf.squeeze(H)
    biasInit = tf.constant_initializer(0.001, dtype=tf.float32)
    logits = layers.linear(tf.nn.dropout(H, keep_prob=dropout), num_outputs=num_outputs, biases_initializer=biasInit,
                           scope=prefix + 'dis', reuse=is_reuse)
    return logits 
开发者ID:yyht,项目名称:BERT,代码行数:8,代码来源:swem_utils.py

示例12: discriminator_2layer

# 需要导入模块: from tensorflow.contrib import layers [as 别名]
# 或者: from tensorflow.contrib.layers import linear [as 别名]
def discriminator_2layer(H, opt, dropout, prefix='', num_outputs=1, is_reuse=None):
    # last layer must be linear
    # H = tf.squeeze(H, [1,2])
    # pdb.set_trace()
    biasInit = tf.constant_initializer(0.001, dtype=tf.float32)
    H_dis = layers.fully_connected(tf.nn.dropout(H, keep_prob=dropout), num_outputs=opt.H_dis,
                                   biases_initializer=biasInit, activation_fn=tf.nn.relu, scope=prefix + 'dis_1',
                                   reuse=is_reuse)
    logits = layers.linear(tf.nn.dropout(H_dis, keep_prob=dropout), num_outputs=num_outputs,
                           biases_initializer=biasInit, scope=prefix + 'dis_2', reuse=is_reuse)
    return logits 
开发者ID:yyht,项目名称:BERT,代码行数:13,代码来源:swem_utils.py

示例13: discriminator_3layer

# 需要导入模块: from tensorflow.contrib import layers [as 别名]
# 或者: from tensorflow.contrib.layers import linear [as 别名]
def discriminator_3layer(H, opt, dropout, prefix='', num_outputs=1, is_reuse=None):
    # last layer must be linear
    # H = tf.squeeze(H, [1,2])
    # pdb.set_trace()
    biasInit = tf.constant_initializer(0.001, dtype=tf.float32)
    H_dis = layers.fully_connected(tf.nn.dropout(H, keep_prob=dropout), num_outputs=opt.H_dis,
                                   biases_initializer=biasInit, activation_fn=tf.nn.relu, scope=prefix + 'dis_1',
                                   reuse=is_reuse)
    H_dis = layers.fully_connected(tf.nn.dropout(H_dis, keep_prob=dropout), num_outputs=opt.H_dis,
                                   biases_initializer=biasInit, activation_fn=tf.nn.relu, scope=prefix + 'dis_2',
                                   reuse=is_reuse)
    logits = layers.linear(tf.nn.dropout(H_dis, keep_prob=dropout), num_outputs=num_outputs,
                           biases_initializer=biasInit, scope=prefix + 'dis_3', reuse=is_reuse)
    return logits 
开发者ID:yyht,项目名称:BERT,代码行数:16,代码来源:swem_utils.py

示例14: discriminator_2layer

# 需要导入模块: from tensorflow.contrib import layers [as 别名]
# 或者: from tensorflow.contrib.layers import linear [as 别名]
def discriminator_2layer(H, opt, dropout, prefix='', num_outputs=1, is_reuse=None):
    # last layer must be linear
    print(num_outputs, "===num outputs===")
    biasInit = tf.constant_initializer(0.001, dtype=tf.float32)
    H_dis = layers.fully_connected(tf.nn.dropout(H, keep_prob=dropout), num_outputs=opt.H_dis,
                                   biases_initializer=biasInit, activation_fn=tf.nn.relu, scope=prefix + 'dis_1',
                                   reuse=is_reuse)
    logits = layers.linear(tf.nn.dropout(H_dis, keep_prob=dropout), num_outputs=num_outputs,
                           biases_initializer=biasInit, scope=prefix + 'dis_2', reuse=is_reuse)
    return logits 
开发者ID:yyht,项目名称:BERT,代码行数:12,代码来源:leam_utils.py

示例15: discriminator_3layer

# 需要导入模块: from tensorflow.contrib import layers [as 别名]
# 或者: from tensorflow.contrib.layers import linear [as 别名]
def discriminator_3layer(H, opt, dropout, prefix='', num_outputs=1, is_reuse=None):
    # last layer must be linear
    biasInit = tf.constant_initializer(0.001, dtype=tf.float32)
    H_dis = layers.fully_connected(tf.nn.dropout(H, keep_prob=dropout), num_outputs=opt.H_dis,
                                   biases_initializer=biasInit, activation_fn=tf.nn.relu, scope=prefix + 'dis_1',
                                   reuse=is_reuse)
    H_dis = layers.fully_connected(tf.nn.dropout(H_dis, keep_prob=dropout), num_outputs=opt.H_dis,
                                   biases_initializer=biasInit, activation_fn=tf.nn.relu, scope=prefix + 'dis_2',
                                   reuse=is_reuse)
    logits = layers.linear(tf.nn.dropout(H_dis, keep_prob=dropout), num_outputs=num_outputs,
                           biases_initializer=biasInit, scope=prefix + 'dis_3', reuse=is_reuse)
    return logits 
开发者ID:yyht,项目名称:BERT,代码行数:14,代码来源:leam_utils.py


注:本文中的tensorflow.contrib.layers.linear方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。