当前位置: 首页>>代码示例>>Python>>正文


Python layers.layer_norm方法代码示例

本文整理汇总了Python中tensorflow.contrib.layers.layer_norm方法的典型用法代码示例。如果您正苦于以下问题:Python layers.layer_norm方法的具体用法?Python layers.layer_norm怎么用?Python layers.layer_norm使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.contrib.layers的用法示例。


在下文中一共展示了layers.layer_norm方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: cnn_to_mlp

# 需要导入模块: from tensorflow.contrib import layers [as 别名]
# 或者: from tensorflow.contrib.layers import layer_norm [as 别名]
def cnn_to_mlp(convs, hiddens, dueling=False, layer_norm=False):
    """This model takes as input an observation and returns values of all actions.

    Parameters
    ----------
    convs: [(int, int int)]
        list of convolutional layers in form of
        (num_outputs, kernel_size, stride)
    hiddens: [int]
        list of sizes of hidden layers
    dueling: bool
        if true double the output MLP to compute a baseline
        for action scores

    Returns
    -------
    q_func: function
        q_function for DQN algorithm.
    """

    return lambda *args, **kwargs: _cnn_to_mlp(convs, hiddens, dueling, layer_norm=layer_norm, *args, **kwargs) 
开发者ID:Hwhitetooth,项目名称:lirpg,代码行数:23,代码来源:models.py

示例2: create_logit

# 需要导入模块: from tensorflow.contrib import layers [as 别名]
# 或者: from tensorflow.contrib.layers import layer_norm [as 别名]
def create_logit(self, next_layer, att_scores, output_collection, scope):
    # output
    with tf.variable_scope(scope):
      if not self.is_training:
        # only keep the last time step
        # [N/B, M, C] --> [N/B, 1, C]
        next_layer = next_layer[:, -1:, :]
        # [N/B, L, M, H, W] --> [N/B, L, H, W]
        att_scores = att_scores[:, :, -1, :, :]

      next_layer = self.linear_mapping_weightnorm(
          next_layer,
          out_dim=self.params["nout_embed"],
          output_collection=output_collection)
      next_layer = layer_norm(next_layer, begin_norm_axis=2)
      next_layer = self.linear_mapping_weightnorm(
          next_layer,
          out_dim=self.num_charset,
          var_scope_name="liear_logits",
          output_collection=output_collection)

    return next_layer, att_scores 
开发者ID:FangShancheng,项目名称:conv-ensemble-str,代码行数:24,代码来源:decoder_conv.py

示例3: stacked_highway

# 需要导入模块: from tensorflow.contrib import layers [as 别名]
# 或者: from tensorflow.contrib.layers import layer_norm [as 别名]
def stacked_highway(input_emb, hidden_sizes, dropout_ratio, mode,
                    layer_norm=True):
  """Construct multiple `highway` layers stacked on top of one another.

  Args:
    input_emb: tensor<float> [..., embedding_size]
    hidden_sizes: list<int> [hidden_size_1, hidden_size_2, ...]
    dropout_ratio: The probability of dropping out each unit in the activation.
        This can be None, and is only applied during training.
    mode: One of the keys from tf.estimator.ModeKeys.
    layer_norm: Boolean indicating whether we should apply layer normalization.

  Returns:
    output_emb: A Tensor with the same shape as `input_emb`, except for the last
        dimension which will have size `hidden_sizes[-1]` instead.
  """
  for i, h in enumerate(hidden_sizes):
    with tf.variable_scope("highway_{}".format(i)):
      input_emb = highway(input_emb, h, dropout_ratio, mode, layer_norm)
  return input_emb 
开发者ID:google-research,项目名称:language,代码行数:22,代码来源:common_layers.py

示例4: _mlp

# 需要导入模块: from tensorflow.contrib import layers [as 别名]
# 或者: from tensorflow.contrib.layers import layer_norm [as 别名]
def _mlp(hiddens, inpt, num_actions, scope, reuse=False, layer_norm=False):
    with tf.variable_scope(scope, reuse=reuse):
        out = inpt
        for hidden in hiddens:
            out = layers.fully_connected(out, num_outputs=hidden, activation_fn=None)
            if layer_norm:
                out = layers.layer_norm(out, center=True, scale=True)
            out = tf.nn.relu(out)
        q_out = layers.fully_connected(out, num_outputs=num_actions, activation_fn=None)
        return q_out 
开发者ID:Hwhitetooth,项目名称:lirpg,代码行数:12,代码来源:models.py

示例5: mlp

# 需要导入模块: from tensorflow.contrib import layers [as 别名]
# 或者: from tensorflow.contrib.layers import layer_norm [as 别名]
def mlp(hiddens=[], layer_norm=False):
    """This model takes as input an observation and returns values of all actions.

    Parameters
    ----------
    hiddens: [int]
        list of sizes of hidden layers

    Returns
    -------
    q_func: function
        q_function for DQN algorithm.
    """
    return lambda *args, **kwargs: _mlp(hiddens, layer_norm=layer_norm, *args, **kwargs) 
开发者ID:Hwhitetooth,项目名称:lirpg,代码行数:16,代码来源:models.py

示例6: _cnn_to_mlp

# 需要导入模块: from tensorflow.contrib import layers [as 别名]
# 或者: from tensorflow.contrib.layers import layer_norm [as 别名]
def _cnn_to_mlp(convs, hiddens, dueling, inpt, num_actions, scope, reuse=False, layer_norm=False):
    with tf.variable_scope(scope, reuse=reuse):
        out = inpt
        with tf.variable_scope("convnet"):
            for num_outputs, kernel_size, stride in convs:
                out = layers.convolution2d(out,
                                           num_outputs=num_outputs,
                                           kernel_size=kernel_size,
                                           stride=stride,
                                           activation_fn=tf.nn.relu)
        conv_out = layers.flatten(out)
        with tf.variable_scope("action_value"):
            action_out = conv_out
            for hidden in hiddens:
                action_out = layers.fully_connected(action_out, num_outputs=hidden, activation_fn=None)
                if layer_norm:
                    action_out = layers.layer_norm(action_out, center=True, scale=True)
                action_out = tf.nn.relu(action_out)
            action_scores = layers.fully_connected(action_out, num_outputs=num_actions, activation_fn=None)

        if dueling:
            with tf.variable_scope("state_value"):
                state_out = conv_out
                for hidden in hiddens:
                    state_out = layers.fully_connected(state_out, num_outputs=hidden, activation_fn=None)
                    if layer_norm:
                        state_out = layers.layer_norm(state_out, center=True, scale=True)
                    state_out = tf.nn.relu(state_out)
                state_score = layers.fully_connected(state_out, num_outputs=1, activation_fn=None)
            action_scores_mean = tf.reduce_mean(action_scores, 1)
            action_scores_centered = action_scores - tf.expand_dims(action_scores_mean, 1)
            q_out = state_score + action_scores_centered
        else:
            q_out = action_scores
        return q_out 
开发者ID:Hwhitetooth,项目名称:lirpg,代码行数:37,代码来源:models.py

示例7: build_q_func

# 需要导入模块: from tensorflow.contrib import layers [as 别名]
# 或者: from tensorflow.contrib.layers import layer_norm [as 别名]
def build_q_func(network, hiddens=[256], dueling=True, layer_norm=False, **network_kwargs):
    if isinstance(network, str):
        from baselines.common.models import get_network_builder
        network = get_network_builder(network)(**network_kwargs)   
        
    def q_func_builder(input_placeholder, num_actions, scope, reuse=False):
        with tf.variable_scope(scope, reuse=reuse):
            latent, _ = network(input_placeholder)
            latent = layers.flatten(latent)

            with tf.variable_scope("action_value"):
                action_out = latent
                for hidden in hiddens:
                    action_out = layers.fully_connected(action_out, num_outputs=hidden, activation_fn=None)
                    if layer_norm:
                        action_out = layers.layer_norm(action_out, center=True, scale=True)
                    action_out = tf.nn.relu(action_out)
                action_scores = layers.fully_connected(action_out, num_outputs=num_actions, activation_fn=None)

            if dueling:
                with tf.variable_scope("state_value"):
                    state_out = latent
                    for hidden in hiddens:
                        state_out = layers.fully_connected(state_out, num_outputs=hidden, activation_fn=None)
                        if layer_norm:
                            state_out = layers.layer_norm(state_out, center=True, scale=True)
                        state_out = tf.nn.relu(state_out)
                    state_score = layers.fully_connected(state_out, num_outputs=1, activation_fn=None)
                action_scores_mean = tf.reduce_mean(action_scores, 1)
                action_scores_centered = action_scores - tf.expand_dims(action_scores_mean, 1)
                q_out = state_score + action_scores_centered
            else:
                q_out = action_scores
            return q_out
            
    return q_func_builder 
开发者ID:MaxSobolMark,项目名称:HardRLWithYoutube,代码行数:38,代码来源:models.py

示例8: __init__

# 需要导入模块: from tensorflow.contrib import layers [as 别名]
# 或者: from tensorflow.contrib.layers import layer_norm [as 别名]
def __init__(self, sess, ob_space, ac_space, n_env, n_steps, n_batch,
                 reuse=False, obs_phs=None, dueling=True, **_kwargs):
        super(CnnPolicy, self).__init__(sess, ob_space, ac_space, n_env, n_steps, n_batch, reuse,
                                        feature_extraction="cnn", obs_phs=obs_phs, dueling=dueling,
                                        layer_norm=False, **_kwargs) 
开发者ID:Stable-Baselines-Team,项目名称:stable-baselines,代码行数:7,代码来源:policies.py


注:本文中的tensorflow.contrib.layers.layer_norm方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。