本文整理汇总了Python中tensorflow.contrib.layers.embed_sequence方法的典型用法代码示例。如果您正苦于以下问题:Python layers.embed_sequence方法的具体用法?Python layers.embed_sequence怎么用?Python layers.embed_sequence使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.contrib.layers
的用法示例。
在下文中一共展示了layers.embed_sequence方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: __attention_loss_branch
# 需要导入模块: from tensorflow.contrib import layers [as 别名]
# 或者: from tensorflow.contrib.layers import embed_sequence [as 别名]
def __attention_loss_branch(self, rnn_features):
output_embed = layers.embed_sequence(self.att_train_output,
vocab_size=self.vocab_att_size,
embed_dim=self.att_embed_dim, scope='embed')
# with tf.device('/cpu:0'):
embeddings = tf.Variable(tf.truncated_normal(shape=[self.vocab_att_size, self.att_embed_dim],
stddev=0.1), name='decoder_embedding')
start_tokens = tf.zeros([self.batch_size], dtype=tf.int64)
train_helper = tf.contrib.seq2seq.TrainingHelper(output_embed, self.att_train_length)
pred_helper = tf.contrib.seq2seq.GreedyEmbeddingHelper(embeddings,
start_tokens=tf.to_int32(start_tokens),
end_token=1)
train_outputs = self.__att_decode(train_helper, rnn_features, 'decode')
pred_outputs = self.__att_decode(pred_helper, rnn_features, 'decode', reuse=True)
# train_decode_result = train_outputs[0].rnn_output[0, :-1, :]
# pred_decode_result = pred_outputs[0].rnn_output[0, :, :]
mask = tf.cast(tf.sequence_mask(self.batch_size * [self.att_train_length[0]-1], self.att_train_length[0]), tf.float32)
att_loss = tf.contrib.seq2seq.sequence_loss(train_outputs[0].rnn_output, self.att_target_output,
weights=mask)
return att_loss
示例2: build_compute_graph
# 需要导入模块: from tensorflow.contrib import layers [as 别名]
# 或者: from tensorflow.contrib.layers import embed_sequence [as 别名]
def build_compute_graph():
train_output_embed = encoder_net(image, scope='encode_features')
pred_output_embed = encoder_net(image, scope='encode_features', reuse=True)
output_embed = layers.embed_sequence(train_output, vocab_size=VOCAB_SIZE, embed_dim=VOCAB_SIZE, scope='embed')
embeddings = tf.Variable(tf.truncated_normal(shape=[VOCAB_SIZE, VOCAB_SIZE], stddev=0.1), name='decoder_embedding')
start_tokens = tf.zeros([BATCH_SIZE], dtype=tf.int64)
train_helper = tf.contrib.seq2seq.TrainingHelper(output_embed, train_length)
pred_helper = tf.contrib.seq2seq.GreedyEmbeddingHelper(
embeddings, start_tokens=tf.to_int32(start_tokens), end_token=1)
train_outputs = decode(train_helper, train_output_embed, 'decode')
#pred_outputs = decode(pred_helper, pred_output_embed, 'decode', reuse=True)
pred_outputs = decode(pred_helper, train_output_embed, 'decode', reuse=True)
train_decode_result = train_outputs[0].rnn_output[0, :-1, :]
pred_decode_result = pred_outputs[0].rnn_output[0, :, :]
mask = tf.cast(tf.sequence_mask(BATCH_SIZE * [train_length[0] - 1], train_length[0]),
tf.float32)
att_loss = tf.contrib.seq2seq.sequence_loss(train_outputs[0].rnn_output, target_output,
weights=mask)
loss = tf.reduce_mean(att_loss)
train_one_step = tf.train.AdadeltaOptimizer().minimize(loss)
return loss, train_one_step, train_decode_result, pred_decode_result
示例3: _make_encoder
# 需要导入模块: from tensorflow.contrib import layers [as 别名]
# 或者: from tensorflow.contrib.layers import embed_sequence [as 别名]
def _make_encoder(self):
"""Create the encoder"""
inputs = layers.embed_sequence(
self.X,
vocab_size=self.vocab_size,
embed_dim=self.embed_dim,
scope='embed')
# Project to correct dimensions
# b/c the bidirectional RNN's forward and backward
# outputs are concatenated, the size will be 2x,
# so halve the hidden sizes here to compensate
inputs = tf.layers.dense(inputs, self.hidden_size//2)
cell_fw = rnn.MultiRNNCell([
self._make_cell(self.hidden_size//2) for _ in range(self.depth)
])
cell_bw = rnn.MultiRNNCell([
self._make_cell(self.hidden_size//2) for _ in range(self.depth)
])
encoder_outputs, encoder_final_state = tf.nn.bidirectional_dynamic_rnn(
cell_fw=cell_fw, cell_bw=cell_bw, sequence_length=self.sequence_length,
inputs=inputs, dtype=tf.float32)
# Concat forward and backward outputs
encoder_outputs = tf.concat(encoder_outputs, 2)
# Concat forward and backward layer states
encoder_fw_states, encoder_bw_states = encoder_final_state
encoder_final_state = []
for fw, bw in zip(encoder_fw_states, encoder_bw_states):
c = tf.concat([fw.c, bw.c], 1)
h = tf.concat([fw.h, bw.h], 1)
encoder_final_state.append(rnn.LSTMStateTuple(c=c, h=h))
return encoder_outputs, encoder_final_state
示例4: build_infer_graph
# 需要导入模块: from tensorflow.contrib import layers [as 别名]
# 或者: from tensorflow.contrib.layers import embed_sequence [as 别名]
def build_infer_graph(x, batch_size, vocab_size=VOCAB_SIZE, embedding_size=32,
rnn_size=128, num_layers=2, p_keep=1.0):
"""
builds inference graph
"""
infer_args = {"batch_size": batch_size, "vocab_size": vocab_size,
"embedding_size": embedding_size, "rnn_size": rnn_size,
"num_layers": num_layers, "p_keep": p_keep}
logger.debug("building inference graph: %s.", infer_args)
# other placeholders
p_keep = tf.placeholder_with_default(p_keep, [], "p_keep")
batch_size = tf.placeholder_with_default(batch_size, [], "batch_size")
# embedding layer
embed_seq = layers.embed_sequence(x, vocab_size, embedding_size)
# shape: [batch_size, seq_len, embedding_size]
embed_seq = tf.nn.dropout(embed_seq, keep_prob=p_keep)
# shape: [batch_size, seq_len, embedding_size]
# RNN layers
cells = [rnn.LSTMCell(rnn_size) for _ in range(num_layers)]
cells = [rnn.DropoutWrapper(cell, output_keep_prob=p_keep) for cell in cells]
cells = rnn.MultiRNNCell(cells)
input_state = cells.zero_state(batch_size, tf.float32)
# shape: [num_layers, 2, batch_size, rnn_size]
rnn_out, output_state = tf.nn.dynamic_rnn(cells, embed_seq, initial_state=input_state)
# rnn_out shape: [batch_size, seq_len, rnn_size]
# output_state shape: [num_layers, 2, batch_size, rnn_size]
with tf.name_scope("lstm"):
tf.summary.histogram("outputs", rnn_out)
for c_state, h_state in output_state:
tf.summary.histogram("c_state", c_state)
tf.summary.histogram("h_state", h_state)
# fully connected layer
logits = layers.fully_connected(rnn_out, vocab_size, activation_fn=None)
# shape: [batch_size, seq_len, vocab_size]
# predictions
with tf.name_scope("softmax"):
probs = tf.nn.softmax(logits)
# shape: [batch_size, seq_len, vocab_size]
with tf.name_scope("sequence"):
tf.summary.histogram("embeddings", embed_seq)
tf.summary.histogram("logits", logits)
model = {"logits": logits, "probs": probs,
"input_state": input_state, "output_state": output_state,
"p_keep": p_keep, "batch_size": batch_size, "infer_args": infer_args}
return model
示例5: _make_train
# 需要导入模块: from tensorflow.contrib import layers [as 别名]
# 或者: from tensorflow.contrib.layers import embed_sequence [as 别名]
def _make_train(self, decoder_cell, decoder_initial_state):
# Assume 0 is the START token
start_tokens = tf.zeros((self.batch_size,), dtype=tf.int32)
y = tf.concat([tf.expand_dims(start_tokens, 1), self.y], 1)
output_lengths = tf.reduce_sum(tf.to_int32(tf.not_equal(y, 1)), 1)
# Reuse encoding embeddings
inputs = layers.embed_sequence(
y,
vocab_size=self.vocab_size,
embed_dim=self.embed_dim,
scope='embed', reuse=True)
# Prepare the decoder with the attention cell
with tf.variable_scope('decode'):
# Project to correct dimensions
out_proj = tf.layers.Dense(self.vocab_size, name='output_proj')
inputs = tf.layers.dense(inputs, self.hidden_size, name='input_proj')
helper = seq2seq.TrainingHelper(inputs, output_lengths)
decoder = seq2seq.BasicDecoder(
cell=decoder_cell, helper=helper,
initial_state=decoder_initial_state,
output_layer=out_proj)
max_len = tf.reduce_max(output_lengths)
final_outputs, final_state, final_sequence_lengths = seq2seq.dynamic_decode(
decoder=decoder, impute_finished=True, maximum_iterations=max_len)
logits = final_outputs.rnn_output
# Set valid timesteps to 1 and padded steps to 0,
# so we only look at the actual sequence without the padding
mask = tf.sequence_mask(output_lengths, maxlen=max_len, dtype=tf.float32)
# Prioritize examples that the model was wrong on,
# by setting weight=1 to any example where the prediction was not 1,
# i.e. incorrect
# weights = tf.to_float(tf.not_equal(y[:, :-1], 1))
# Training and loss ops,
# with gradient clipping (see [4])
loss_op = seq2seq.sequence_loss(logits, self.y, weights=mask)
optimizer = tf.train.AdamOptimizer(self.learning_rate)
gradients, variables = zip(*optimizer.compute_gradients(loss_op))
gradients, _ = tf.clip_by_global_norm(gradients, self.max_grad_norm)
train_op = optimizer.apply_gradients(zip(gradients, variables))
# Compute accuracy
# Use the mask from before so we only compare
# the relevant sequence lengths for each example
pred = tf.argmax(logits, axis=2, output_type=tf.int32)
pred = tf.boolean_mask(pred, mask)
true = tf.boolean_mask(self.y, mask)
accs = tf.cast(tf.equal(pred, true), tf.float32)
accuracy_op = tf.reduce_mean(accs, name='acc')
return loss_op, train_op, accuracy_op