当前位置: 首页>>代码示例>>Python>>正文


Python graph_editor.get_backward_walk_ops方法代码示例

本文整理汇总了Python中tensorflow.contrib.graph_editor.get_backward_walk_ops方法的典型用法代码示例。如果您正苦于以下问题:Python graph_editor.get_backward_walk_ops方法的具体用法?Python graph_editor.get_backward_walk_ops怎么用?Python graph_editor.get_backward_walk_ops使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.contrib.graph_editor的用法示例。


在下文中一共展示了graph_editor.get_backward_walk_ops方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: dependency_of_targets

# 需要导入模块: from tensorflow.contrib import graph_editor [as 别名]
# 或者: from tensorflow.contrib.graph_editor import get_backward_walk_ops [as 别名]
def dependency_of_targets(targets, op):
    """
    Check that op is in the subgraph induced by the dependencies of targets.
    The result is memoized.

    This is useful if some SessionRunHooks should be run only together with certain ops.

    Args:
        targets: a tuple of ops or tensors. The targets to find dependencies of.
        op (tf.Operation or tf.Tensor):

    Returns:
        bool
    """
    # TODO tensorarray? sparsetensor?
    if isinstance(op, tf.Tensor):
        op = op.op
    assert isinstance(op, tf.Operation), op

    from tensorflow.contrib.graph_editor import get_backward_walk_ops
    # alternative implementation can use graph_util.extract_sub_graph
    dependent_ops = get_backward_walk_ops(targets, control_inputs=True)
    return op in dependent_ops 
开发者ID:microsoft,项目名称:petridishnn,代码行数:25,代码来源:dependency.py

示例2: fast_backward_ops

# 需要导入模块: from tensorflow.contrib import graph_editor [as 别名]
# 或者: from tensorflow.contrib.graph_editor import get_backward_walk_ops [as 别名]
def fast_backward_ops(within_ops, seed_ops, stop_at_ts):
    bwd_ops = set(ge.get_backward_walk_ops(seed_ops, stop_at_ts=stop_at_ts))
    ops = bwd_ops.intersection(within_ops).difference(
        [t.op for t in stop_at_ts])
    return list(ops) 
开发者ID:openai,项目名称:glow,代码行数:7,代码来源:memory_saving_gradients.py

示例3: fast_backward_ops

# 需要导入模块: from tensorflow.contrib import graph_editor [as 别名]
# 或者: from tensorflow.contrib.graph_editor import get_backward_walk_ops [as 别名]
def fast_backward_ops(within_ops, seed_ops, stop_at_ts):
    bwd_ops = set(ge.get_backward_walk_ops(seed_ops, stop_at_ts=stop_at_ts))
    ops = bwd_ops.intersection(within_ops).difference([t.op for t in stop_at_ts])
    return list(ops) 
开发者ID:cybertronai,项目名称:gradient-checkpointing,代码行数:6,代码来源:memory_saving_gradients.py

示例4: export_subgraph

# 需要导入模块: from tensorflow.contrib import graph_editor [as 别名]
# 或者: from tensorflow.contrib.graph_editor import get_backward_walk_ops [as 别名]
def export_subgraph(checkpoint, output_tensors, saveto):
    """
    For the current graph, export the subgraph connected to output_tensors to a new graph_def file
    :param checkpoint: path to checkpoint
    :param output_tensors: output tensor names
    :param saveto: path to save graph_def file to
    :return:
    """
    saver = tf.train.import_meta_graph(checkpoint + '.meta', clear_devices=True)
    graph = tf.get_default_graph()
    if isinstance(output_tensors, str):
        output_tensors = [graph.get_tensor_by_name(output_tensors)]
    else:
        assert all([isinstance(out, str) for out in output_tensors])
        output_tensors = [graph.get_tensor_by_name(out) for out in output_tensors]

    def _var_ops(var_op):  # get operations one step ahead of variable ops: read/assign/etc.
        return [var_op.name] + [op.name for t in var_op.outputs for op in t.consumers()]

    keep_op_names = [out.op.name for out in output_tensors]
    var_ops = list({op for out in output_tensors for op in ge.get_backward_walk_ops(out) if op.type == 'VariableV2'})
    keep_op_names += [opname for op in var_ops for opname in _var_ops(op)]
    keep_op_names = [opname for opname in keep_op_names if 'save/' not in opname and 'save_' not in opname]
    graph_def = tf.graph_util.extract_sub_graph(graph.as_graph_def(), keep_op_names)

    with tf.Session() as sess:
        saver.restore(sess, checkpoint)
        new_graph_def = tf.graph_util.convert_variables_to_constants(
            sess, graph_def, [out.op.name for out in output_tensors])
    tf.reset_default_graph()
    tf.train.export_meta_graph(saveto, graph_def=new_graph_def, clear_devices=True) 
开发者ID:gruberto,项目名称:Gated2Depth,代码行数:33,代码来源:export.py

示例5: create_session

# 需要导入模块: from tensorflow.contrib import graph_editor [as 别名]
# 或者: from tensorflow.contrib.graph_editor import get_backward_walk_ops [as 别名]
def create_session(self):
        sess = tf.Session(target=self.target, config=self.config)

        def blocking_op(x):
            """
            Whether an op is possibly blocking.
            """
            if x.op_def is not None and not x.op_def.is_stateful:
                return False
            if "Dequeue" in x.type or "Enqueue" in x.type:
                return True
            if "Unstage" in x.type:
                return True
            if x.type in ["ZMQPull"]:
                return True
            return False

        def run(op):
            if not is_tfv2():
                from tensorflow.contrib.graph_editor import get_backward_walk_ops

                deps = get_backward_walk_ops(op, control_inputs=True)
                for dep_op in deps:
                    if blocking_op(dep_op):
                        logger.warn(
                            "Initializer '{}' depends on a blocking op '{}'. "
                            "This initializer is likely to hang!".format(
                                op.name, dep_op.name))
            sess.run(op)

        run(tf.global_variables_initializer())
        run(tf.local_variables_initializer())
        run(tf.tables_initializer())
        return sess 
开发者ID:microsoft,项目名称:petridishnn,代码行数:36,代码来源:sesscreate.py


注:本文中的tensorflow.contrib.graph_editor.get_backward_walk_ops方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。