本文整理汇总了Python中tensorflow.contrib.framework.is_tensor方法的典型用法代码示例。如果您正苦于以下问题:Python framework.is_tensor方法的具体用法?Python framework.is_tensor怎么用?Python framework.is_tensor使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.contrib.framework
的用法示例。
在下文中一共展示了framework.is_tensor方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _verify_input_args
# 需要导入模块: from tensorflow.contrib import framework [as 别名]
# 或者: from tensorflow.contrib.framework import is_tensor [as 别名]
def _verify_input_args(x, y, input_fn, feed_fn, batch_size):
"""Verifies validity of co-existance of input arguments."""
if input_fn is None:
if x is None:
raise ValueError('Either x or input_fn must be provided.')
if contrib_framework.is_tensor(x) or (y is not None and
contrib_framework.is_tensor(y)):
raise ValueError('Inputs cannot be tensors. Please provide input_fn.')
if feed_fn is not None:
raise ValueError('Can not provide both feed_fn and x or y.')
else:
if (x is not None) or (y is not None):
raise ValueError('Can not provide both input_fn and x or y.')
if batch_size is not None:
raise ValueError('Can not provide both input_fn and batch_size.')
示例2: _get_input_fn
# 需要导入模块: from tensorflow.contrib import framework [as 别名]
# 或者: from tensorflow.contrib.framework import is_tensor [as 别名]
def _get_input_fn(x, y, input_fn, feed_fn, batch_size, shuffle=False, epochs=1):
"""Make inputs into input and feed functions.
Args:
x: Numpy, Pandas or Dask matrix or iterable.
y: Numpy, Pandas or Dask matrix or iterable.
input_fn: Pre-defined input function for training data.
feed_fn: Pre-defined data feeder function.
batch_size: Size to split data into parts. Must be >= 1.
shuffle: Whether to shuffle the inputs.
epochs: Number of epochs to run.
Returns:
Data input and feeder function based on training data.
Raises:
ValueError: Only one of `(x & y)` or `input_fn` must be provided.
"""
if input_fn is None:
if x is None:
raise ValueError('Either x or input_fn must be provided.')
if contrib_framework.is_tensor(x) or (y is not None and
contrib_framework.is_tensor(y)):
raise ValueError('Inputs cannot be tensors. Please provide input_fn.')
if feed_fn is not None:
raise ValueError('Can not provide both feed_fn and x or y.')
df = data_feeder.setup_train_data_feeder(x, y, n_classes=None,
batch_size=batch_size,
shuffle=shuffle,
epochs=epochs)
return df.input_builder, df.get_feed_dict_fn()
if (x is not None) or (y is not None):
raise ValueError('Can not provide both input_fn and x or y.')
if batch_size is not None:
raise ValueError('Can not provide both input_fn and batch_size.')
return input_fn, feed_fn
示例3: __init__
# 需要导入模块: from tensorflow.contrib import framework [as 别名]
# 或者: from tensorflow.contrib.framework import is_tensor [as 别名]
def __init__(self, args):
self.args = args
self.tf_args = [(i,a) for i,a in enumerate(args) if is_tensor(a)]
示例4: __init__
# 需要导入模块: from tensorflow.contrib import framework [as 别名]
# 或者: from tensorflow.contrib.framework import is_tensor [as 别名]
def __init__(self,
dtype,
is_continuous,
is_reparameterized,
validate_args,
allow_nan_stats,
parameters=None,
graph_parents=None,
name=None):
"""Constructs the `Distribution`.
**This is a private method for subclass use.**
Args:
dtype: The type of the event samples. `None` implies no type-enforcement.
is_continuous: Python boolean. If `True` this
`Distribution` is continuous over its supported domain.
is_reparameterized: Python boolean. If `True` this
`Distribution` can be reparameterized in terms of some standard
distribution with a function whose Jacobian is constant for the support
of the standard distribution.
validate_args: Python boolean. Whether to validate input with asserts.
If `validate_args` is `False`, and the inputs are invalid,
correct behavior is not guaranteed.
allow_nan_stats: Python boolean. If `False`, raise an
exception if a statistic (e.g., mean, mode) is undefined for any batch
member. If True, batch members with valid parameters leading to
undefined statistics will return `NaN` for this statistic.
parameters: Python dictionary of parameters used to instantiate this
`Distribution`.
graph_parents: Python list of graph prerequisites of this `Distribution`.
name: A name for this distribution. Default: subclass name.
Raises:
ValueError: if any member of graph_parents is `None` or not a `Tensor`.
"""
graph_parents = [] if graph_parents is None else graph_parents
for i, t in enumerate(graph_parents):
if t is None or not contrib_framework.is_tensor(t):
raise ValueError("Graph parent item %d is not a Tensor; %s." % (i, t))
parameters = parameters or {}
self._dtype = dtype
self._is_continuous = is_continuous
self._is_reparameterized = is_reparameterized
self._allow_nan_stats = allow_nan_stats
self._validate_args = validate_args
self._parameters = parameters
self._graph_parents = graph_parents
self._name = name or type(self).__name__
示例5: __init__
# 需要导入模块: from tensorflow.contrib import framework [as 别名]
# 或者: from tensorflow.contrib.framework import is_tensor [as 别名]
def __init__(self,
dtype,
graph_parents=None,
is_non_singular=None,
is_self_adjoint=None,
is_positive_definite=None,
name=None):
r"""Initialize the `LinearOperator`.
**This is a private method for subclass use.**
**Subclasses should copy-paste this `__init__` documentation.**
Args:
dtype: The type of the this `LinearOperator`. Arguments to `apply` and
`solve` will have to be this type.
graph_parents: Python list of graph prerequisites of this `LinearOperator`
Typically tensors that are passed during initialization.
is_non_singular: Expect that this operator is non-singular.
is_self_adjoint: Expect that this operator is equal to its hermitian
transpose. If `dtype` is real, this is equivalent to being symmetric.
is_positive_definite: Expect that this operator is positive definite,
meaning the real part of all eigenvalues is positive. We do not require
the operator to be self-adjoint to be positive-definite. See:
https://en.wikipedia.org/wiki/Positive-definite_matrix\
#Extension_for_non_symmetric_matrices
name: A name for this `LinearOperator`.
Raises:
ValueError: if any member of graph_parents is `None` or not a `Tensor`.
"""
# Check and auto-set flags.
if is_positive_definite:
if is_non_singular is False:
raise ValueError("A positive definite matrix is always non-singular.")
is_non_singular = True
graph_parents = [] if graph_parents is None else graph_parents
for i, t in enumerate(graph_parents):
if t is None or not contrib_framework.is_tensor(t):
raise ValueError("Graph parent item %d is not a Tensor; %s." % (i, t))
self._dtype = dtype
self._graph_parents = graph_parents
self._is_non_singular = is_non_singular
self._is_self_adjoint = is_self_adjoint
self._is_positive_definite = is_positive_definite
self._name = name or type(self).__name__
# We will cache some values to avoid repeatedly adding shape
# manipulation ops to the graph. Cleaner.
self._cached_shape_dynamic = None
self._cached_batch_shape_dynamic = None
self._cached_domain_dimension_dynamic = None
self._cached_range_dimension_dynamic = None
self._cached_tensor_rank_dynamic = None