当前位置: 首页>>代码示例>>Python>>正文


Python eager.Iterator方法代码示例

本文整理汇总了Python中tensorflow.contrib.eager.Iterator方法的典型用法代码示例。如果您正苦于以下问题:Python eager.Iterator方法的具体用法?Python eager.Iterator怎么用?Python eager.Iterator使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.contrib.eager的用法示例。


在下文中一共展示了eager.Iterator方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: main

# 需要导入模块: from tensorflow.contrib import eager [as 别名]
# 或者: from tensorflow.contrib.eager import Iterator [as 别名]
def main():
    dataset = tf.data.Dataset.from_generator(gen, (tf.int32, tf.int32),
                                             (tf.TensorShape([BATCH_SIZE]),
                                              tf.TensorShape([BATCH_SIZE, 1])))
    optimizer = tf.compat.v1.train.GradientDescentOptimizer(LEARNING_RATE)
    model = Word2Vec(vocab_size=VOCAB_SIZE, embed_size=EMBED_SIZE)
    grad_fn = tfe.implicit_value_and_gradients(model.compute_loss)
    total_loss = 0.0
    num_train_steps = 0
    while num_train_steps < NUM_TRAIN_STEPS:
        for center_words, target_words in tfe.Iterator(dataset):
            if num_train_steps >= NUM_TRAIN_STEPS:
                break
            loss_batch, grads = grad_fn(center_words, target_words)
            total_loss += loss_batch
            optimizer.apply_gradients(grads)
            if (num_train_steps + 1) % SKIP_STEP == 0:
                print('Average loss at step {}: {:5.1f}'.format(
                    num_train_steps, total_loss / SKIP_STEP
                ))
                total_loss = 0.0
            num_train_steps += 1 
开发者ID:wdxtub,项目名称:deep-learning-note,代码行数:24,代码来源:9_w2v_eager.py

示例2: train_one_epoch

# 需要导入模块: from tensorflow.contrib import eager [as 别名]
# 或者: from tensorflow.contrib.eager import Iterator [as 别名]
def train_one_epoch(model, optimizer, dataset, log_interval=None):
  """Trains model on `dataset` using `optimizer`."""

  tf.train.get_or_create_global_step()

  def model_loss(labels, images):
    prediction = model(images, training=True)
    loss_value = loss(prediction, labels)
    tf.contrib.summary.scalar('loss', loss_value)
    tf.contrib.summary.scalar('accuracy',
                              compute_accuracy(prediction, labels))
    return loss_value

  for (batch, (images, labels)) in enumerate(tfe.Iterator(dataset)):
    with tf.contrib.summary.record_summaries_every_n_global_steps(10):
      batch_model_loss = functools.partial(model_loss, labels, images)
      optimizer.minimize(
          batch_model_loss, global_step=tf.train.get_global_step())
      if log_interval and batch % log_interval == 0:
        print('Batch #%d\tLoss: %.6f' % (batch, batch_model_loss())) 
开发者ID:floydhub,项目名称:dockerfiles,代码行数:22,代码来源:mnist_eager.py

示例3: _bulid

# 需要导入模块: from tensorflow.contrib import eager [as 别名]
# 或者: from tensorflow.contrib.eager import Iterator [as 别名]
def _bulid(self, dataset, sess=None):
        self._dataset = dataset

        if self._is_eager:
            self._eager_iterator = tfe.Iterator(dataset)
        else:
            self._iterator = dataset.make_initializable_iterator()
            self._batch_op = self._iterator.get_next()
            if sess:
                self._sess = sess
            else:
                self._sess = session()

        try:
            self.reset()
        except:
            pass 
开发者ID:csmliu,项目名称:STGAN,代码行数:19,代码来源:dataset.py

示例4: train

# 需要导入模块: from tensorflow.contrib import eager [as 别名]
# 或者: from tensorflow.contrib.eager import Iterator [as 别名]
def train(model, optimizer, dataset, step_counter, log_interval=None):
  """Trains model on `dataset` using `optimizer`."""

  start = time.time()
  for (batch, (images, labels)) in enumerate(tfe.Iterator(dataset)):
    with tf.contrib.summary.record_summaries_every_n_global_steps(
        10, global_step=step_counter):
      # Record the operations used to compute the loss given the input,
      # so that the gradient of the loss with respect to the variables
      # can be computed.
      with tf.GradientTape() as tape:
        logits = model(images, training=True)
        loss_value = loss(logits, labels)
        tf.contrib.summary.scalar('loss', loss_value)
        tf.contrib.summary.scalar('accuracy', compute_accuracy(logits, labels))
      grads = tape.gradient(loss_value, model.variables)
      optimizer.apply_gradients(
          zip(grads, model.variables), global_step=step_counter)
      if log_interval and batch % log_interval == 0:
        rate = log_interval / (time.time() - start)
        print('Step #%d\tLoss: %.6f (%d steps/sec)' % (batch, loss_value, rate))
        start = time.time() 
开发者ID:PipelineAI,项目名称:models,代码行数:24,代码来源:mnist_eager.py

示例5: test

# 需要导入模块: from tensorflow.contrib import eager [as 别名]
# 或者: from tensorflow.contrib.eager import Iterator [as 别名]
def test(model, dataset):
  """Perform an evaluation of `model` on the examples from `dataset`."""
  avg_loss = tfe.metrics.Mean('loss')
  accuracy = tfe.metrics.Accuracy('accuracy')

  for (images, labels) in tfe.Iterator(dataset):
    logits = model(images, training=False)
    avg_loss(loss(logits, labels))
    accuracy(
        tf.argmax(logits, axis=1, output_type=tf.int64),
        tf.cast(labels, tf.int64))
  print('Test set: Average loss: %.4f, Accuracy: %4f%%\n' %
        (avg_loss.result(), 100 * accuracy.result()))
  with tf.contrib.summary.always_record_summaries():
    tf.contrib.summary.scalar('loss', avg_loss.result())
    tf.contrib.summary.scalar('accuracy', accuracy.result()) 
开发者ID:PipelineAI,项目名称:models,代码行数:18,代码来源:mnist_eager.py

示例6: main

# 需要导入模块: from tensorflow.contrib import eager [as 别名]
# 或者: from tensorflow.contrib.eager import Iterator [as 别名]
def main():
  dataset = tf.data.Dataset.from_generator(gen, (tf.int32, tf.int32),
                              (tf.TensorShape([BATCH_SIZE]),
                              tf.TensorShape([BATCH_SIZE, 1])))
  optimizer = tf.train.GradientDescentOptimizer(LEARNING_RATE)
  model = Word2Vec(vocab_size=VOCAB_SIZE, embed_size=EMBED_SIZE)
  grad_fn = tfe.implicit_value_and_gradients(model.compute_loss)
  total_loss = 0.0  # for average loss in the last SKIP_STEP steps
  num_train_steps = 0
  while num_train_steps < NUM_TRAIN_STEPS:
    for center_words, target_words in tfe.Iterator(dataset):
      if num_train_steps >= NUM_TRAIN_STEPS:
        break
      loss_batch, grads = grad_fn(center_words, target_words)
      total_loss += loss_batch
      optimizer.apply_gradients(grads)
      if (num_train_steps + 1) % SKIP_STEP == 0:
        print('Average loss at step {}: {:5.1f}'.format(
                num_train_steps, total_loss / SKIP_STEP))
        total_loss = 0.0
      num_train_steps += 1 
开发者ID:chiphuyen,项目名称:stanford-tensorflow-tutorials,代码行数:23,代码来源:04_word2vec_eager.py

示例7: test

# 需要导入模块: from tensorflow.contrib import eager [as 别名]
# 或者: from tensorflow.contrib.eager import Iterator [as 别名]
def test(model, dataset):
  """Perform an evaluation of `model` on the examples from `dataset`."""
  avg_loss = tfe.metrics.Mean('loss')
  accuracy = tfe.metrics.Accuracy('accuracy')

  for (images, labels) in tfe.Iterator(dataset):
    predictions = model(images, training=False)
    avg_loss(loss(predictions, labels))
    accuracy(tf.argmax(predictions, axis=1, output_type=tf.int64),
             tf.argmax(labels, axis=1, output_type=tf.int64))
  print('Test set: Average loss: %.4f, Accuracy: %4f%%\n' %
        (avg_loss.result(), 100 * accuracy.result()))
  with tf.contrib.summary.always_record_summaries():
    tf.contrib.summary.scalar('loss', avg_loss.result())
    tf.contrib.summary.scalar('accuracy', accuracy.result()) 
开发者ID:floydhub,项目名称:dockerfiles,代码行数:17,代码来源:mnist_eager.py

示例8: reset

# 需要导入模块: from tensorflow.contrib import eager [as 别名]
# 或者: from tensorflow.contrib.eager import Iterator [as 别名]
def reset(self, feed_dict={}):
        if self._is_eager:
            self._eager_iterator = tfe.Iterator(self._dataset)
        else:
            self._sess.run(self._iterator.initializer, feed_dict=feed_dict) 
开发者ID:csmliu,项目名称:STGAN,代码行数:7,代码来源:dataset.py

示例9: test

# 需要导入模块: from tensorflow.contrib import eager [as 别名]
# 或者: from tensorflow.contrib.eager import Iterator [as 别名]
def test(self, mode):
		"""
		Testing procedure

		Args:
			mode: string, 'validation' or 'test',
				choose which set to test
		"""
		test_examples = self.testset.dataset_size

		total_top1_accuracy = 0.
		total_topk_accuracy = 0.

		for (ex_i, (images, label)) in enumerate(tfe.Iterator(self.testset.dataset)):

			top_1_a = self.top_1_accuracy(images, label)
			top_k_a = self.top_k_accuracy(images, label)
			
			total_top1_accuracy += top_1_a
			total_topk_accuracy += top_k_a

			if (ex_i % self.cfg.DISPLAY_STEP) == 0:
				print ('Examples done: {:5d}/{} ---- Top-1: {:.4f} -- Top-{}: {:.4f}'.format(ex_i + 1, test_examples, total_top1_accuracy / (ex_i + 1), self.cfg.TOP_K, total_topk_accuracy / (ex_i + 1)))
		
		print ('---- Final accuracy ----')
		print ('Top-1: {:.4f} -- Top-{}: {:.4f}'.format(total_top1_accuracy / test_examples, self.cfg.TOP_K, total_topk_accuracy / test_examples))
		print ('Top-1 error rate: {:.4f} -- Top-{} error rate: {:.4f}'.format(1 - (total_top1_accuracy / test_examples), self.cfg.TOP_K, 1 - (total_topk_accuracy / test_examples))) 
开发者ID:dontfollowmeimcrazy,项目名称:imagenet,代码行数:29,代码来源:test.py

示例10: train

# 需要导入模块: from tensorflow.contrib import eager [as 别名]
# 或者: from tensorflow.contrib.eager import Iterator [as 别名]
def train(self):
		"""
		Training procedure
		"""
		start_time = time.time()
		step_time = 0.0

		with self.writer.as_default():
			with tf.contrib.summary.record_summaries_every_n_global_steps(self.cfg.DISPLAY_STEP):
				
				for e in range(self.epoch.numpy(), self.cfg.EPOCHS):
					tf.assign(self.epoch, e)
					for (batch_i, (images, labels)) in enumerate(tfe.Iterator(self.trainingset.dataset)):
						self.global_step = tf.train.get_global_step()
						step = self.global_step.numpy() + 1
						
						step_start_time = int(round(time.time() * 1000))

						self.optimizer.minimize(lambda: self.loss('train', images, labels), global_step=self.global_step)

						step_end_time = int(round(time.time() * 1000))
						step_time += step_end_time - step_start_time

						if (step % self.cfg.DISPLAY_STEP) == 0:
							l = self.loss('train', images, labels)
							a = self.accuracy('train', images, labels).numpy()
							print ('Epoch: {:03d} Step/Batch: {:09d} Step mean time: {:04d}ms \nLoss: {:.7f} Training accuracy: {:.4f}'.format(e, step, int(step_time / step), l, a))
						
						if (step % self.cfg.VALIDATION_STEP) == 0:
							val_images, val_labels = tfe.Iterator(self.valset.dataset).next()
							l = self.loss('val', val_images, val_labels)
							a = self.accuracy('val', val_images, val_labels).numpy()
							int_time = time.time() - start_time
							print ('Elapsed time: {} --- Loss: {:.7f} Validation accuracy: {:.4f}'.format(ut.format_time(int_time), l, a))
						
						if (step % self.cfg.SAVE_STEP) == 0:
							tfe.Saver(self.all_variables).save(os.path.join(self.cfg.CKPT_PATH, 'net.ckpt'), global_step=self.global_step)
							print('Variables saved') 
开发者ID:dontfollowmeimcrazy,项目名称:imagenet,代码行数:40,代码来源:train.py

示例11: run_train_epoch

# 需要导入模块: from tensorflow.contrib import eager [as 别名]
# 或者: from tensorflow.contrib.eager import Iterator [as 别名]
def run_train_epoch(self, dataset):
        num_correct_total = 0
        for (x, y) in tfe.Iterator(dataset):
            self.run_train_step(x, y)
            num_correct_total += self.num_correct
        return num_correct_total 
开发者ID:PacktPublishing,项目名称:-Learn-Artificial-Intelligence-with-TensorFlow,代码行数:8,代码来源:eager.py

示例12: train

# 需要导入模块: from tensorflow.contrib import eager [as 别名]
# 或者: from tensorflow.contrib.eager import Iterator [as 别名]
def train(loss_fn):
  """Train a regression model evaluated using `loss_fn`."""
  print('Training; loss function: ' + loss_fn.__name__)
  optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01)

  # Define the function through which to differentiate.
  def loss_for_example(x, y):
    return loss_fn(y, prediction(x))

  # `grad_fn(x_i, y_i)` returns (1) the value of `loss_for_example`
  # evaluated at `x_i`, `y_i` and (2) the gradients of any variables used in
  # calculating it.
  grad_fn = tfe.implicit_value_and_gradients(loss_for_example)

  start = time.time()
  for epoch in range(100):
    total_loss = 0.0
    for x_i, y_i in tfe.Iterator(dataset):
      loss, gradients = grad_fn(x_i, y_i)
      # Take an optimization step and update variables.
      optimizer.apply_gradients(gradients)
      total_loss += loss
    if epoch % 10 == 0:
      print('Epoch {0}: {1}'.format(epoch, total_loss / n_samples))
  print('Took: %f seconds' % (time.time() - start))
  print('Eager execution exhibits significant overhead per operation. '
        'As you increase your batch size, the impact of the overhead will '
        'become less noticeable. Eager execution is under active development: '
        'expect performance to increase substantially in the near future!') 
开发者ID:chiphuyen,项目名称:stanford-tensorflow-tutorials,代码行数:31,代码来源:04_linreg_eager.py

示例13: train

# 需要导入模块: from tensorflow.contrib import eager [as 别名]
# 或者: from tensorflow.contrib.eager import Iterator [as 别名]
def train(loss_fn):
  """Train a regression model evaluated using `loss_fn`."""
  print('Training; loss function: ' + loss_fn.__name__)
  optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.01)

  # Define the function through which to differentiate.
  #############################
  ########## TO DO ############
  #############################
  def loss_for_example(x, y):
    pass

  # Obtain a gradients function using `tfe.implicit_value_and_gradients`.
  #############################
  ########## TO DO ############
  #############################
  grad_fn = None

  start = time.time()
  for epoch in range(100):
    total_loss = 0.0
    for x_i, y_i in tfe.Iterator(dataset):
      # Compute the loss and gradient, and take an optimization step.
      #############################
      ########## TO DO ############
      #############################
      optimizer.apply_gradients(gradients)
      total_loss += loss
    if epoch % 10 == 0:
      print('Epoch {0}: {1}'.format(epoch, total_loss / n_samples))
  print('Took: %f seconds' % (time.time() - start))
  print('Eager execution exhibits significant overhead per operation. '
        'As you increase your batch size, the impact of the overhead will '
        'become less noticeable. Eager execution is under active development: '
        'expect performance to increase substantially in the near future!') 
开发者ID:chiphuyen,项目名称:stanford-tensorflow-tutorials,代码行数:37,代码来源:04_linreg_eager_starter.py

示例14: main

# 需要导入模块: from tensorflow.contrib import eager [as 别名]
# 或者: from tensorflow.contrib.eager import Iterator [as 别名]
def main():
  dataset = tf.data.Dataset.from_generator(gen, (tf.int32, tf.int32),
                              (tf.TensorShape([BATCH_SIZE]),
                              tf.TensorShape([BATCH_SIZE, 1])))
  optimizer = tf.train.GradientDescentOptimizer(LEARNING_RATE)
  # Create the model
  #############################
  ########## TO DO ############
  #############################
  model = None

  # Create the gradients function, using `tfe.implicit_value_and_gradients`
  #############################
  ########## TO DO ############
  #############################
  grad_fn = None

  total_loss = 0.0  # for average loss in the last SKIP_STEP steps
  num_train_steps = 0
  while num_train_steps < NUM_TRAIN_STEPS:
    for center_words, target_words in tfe.Iterator(dataset):
      if num_train_steps >= NUM_TRAIN_STEPS:
        break

      # Compute the loss and gradients, and take an optimization step.
      #############################
      ########## TO DO ############
      #############################
      
      if (num_train_steps + 1) % SKIP_STEP == 0:
        print('Average loss at step {}: {:5.1f}'.format(
                num_train_steps, total_loss / SKIP_STEP))
        total_loss = 0.0
      num_train_steps += 1 
开发者ID:chiphuyen,项目名称:stanford-tensorflow-tutorials,代码行数:36,代码来源:04_word2vec_eager_starter.py

示例15: _dataset_iterator

# 需要导入模块: from tensorflow.contrib import eager [as 别名]
# 或者: from tensorflow.contrib.eager import Iterator [as 别名]
def _dataset_iterator(self, group_by_samples_per_pixel, source_samples_per_pixel_list):
    directory = os.path.join(self.tfrecords_creator.base_tfrecords_directory, self.tfrecords_creator.name)
    if group_by_samples_per_pixel:
      assert len(source_samples_per_pixel_list) == 1
      directory = os.path.join(directory, str(source_samples_per_pixel_list[0]))
    files = tf.data.Dataset.list_files(directory + '/*')

    threads = multiprocessing.cpu_count()
    dataset = tf.data.TFRecordDataset(files, compression_type='GZIP', buffer_size=None, num_parallel_reads=threads)


    def _feature_parser(serialized_example):
      features = {}

      for samples_per_pixel in source_samples_per_pixel_list:
        for source_index in range(self.tfrecords_creator.number_of_sources_per_example):
          for source_render_pass in self.tfrecords_creator.source_render_passes_usage.render_passes():
            indexed_source_feature_name = Naming.source_feature_name(source_render_pass, samples_per_pixel=samples_per_pixel, index=source_index)
            features[indexed_source_feature_name] = tf.FixedLenFeature([], tf.string)
      for target_render_pass in self.tfrecords_creator.target_render_passes_usage.render_passes():
        features[Naming.target_feature_name(target_render_pass)] = tf.FixedLenFeature([], tf.string)
      
      parsed_features = tf.parse_single_example(serialized_example, features)
      
      source_features = {}
      for samples_per_pixel in source_samples_per_pixel_list:
        for source_index in range(self.tfrecords_creator.number_of_sources_per_example):
          for source_render_pass in self.tfrecords_creator.source_render_passes_usage.render_passes():
            indexed_source_feature_name = Naming.source_feature_name(source_render_pass, samples_per_pixel=samples_per_pixel, index=source_index)
            source_feature = tf.decode_raw(
                parsed_features[indexed_source_feature_name], tf.float32)
            number_of_channels = RenderPasses.number_of_channels(source_render_pass)
            source_feature = tf.reshape(
                source_feature, [self.tfrecords_creator.tiles_height_width, self.tfrecords_creator.tiles_height_width, number_of_channels])
            source_features[indexed_source_feature_name] = source_feature
      
      target_features = {}
      for target_render_pass in self.tfrecords_creator.target_render_passes_usage.render_passes():
        target_feature = tf.decode_raw(
            parsed_features[Naming.target_feature_name(target_render_pass)], tf.float32)
        number_of_channels = RenderPasses.number_of_channels(target_render_pass)
        target_feature = tf.reshape(
            target_feature, [self.tfrecords_creator.tiles_height_width, self.tfrecords_creator.tiles_height_width, number_of_channels])
        target_features[Naming.target_feature_name(target_render_pass)] = target_feature
      
      return source_features, target_features

    dataset = dataset.map(map_func=_feature_parser, num_parallel_calls=threads)
    iterator = tfe.Iterator(dataset)
    return iterator 
开发者ID:DeepBlender,项目名称:DeepDenoiser,代码行数:52,代码来源:TFRecordsStatistics.py


注:本文中的tensorflow.contrib.eager.Iterator方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。