当前位置: 首页>>代码示例>>Python>>正文


Python v2.zeros方法代码示例

本文整理汇总了Python中tensorflow.compat.v2.zeros方法的典型用法代码示例。如果您正苦于以下问题:Python v2.zeros方法的具体用法?Python v2.zeros怎么用?Python v2.zeros使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.compat.v2的用法示例。


在下文中一共展示了v2.zeros方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: zeros

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import zeros [as 别名]
def zeros(shape, dtype=float):  # pylint: disable=redefined-outer-name
  """Returns an ndarray with the given shape and type filled with zeros.

  Args:
    shape: A fully defined shape. Could be - NumPy array or a python scalar,
      list or tuple of integers, - TensorFlow tensor/ndarray of integer type and
      rank <=1.
    dtype: Optional, defaults to float. The type of the resulting ndarray. Could
      be a python type, a NumPy type or a TensorFlow `DType`.

  Returns:
    An ndarray.
  """
  if dtype:
    dtype = utils.result_type(dtype)
  if isinstance(shape, arrays_lib.ndarray):
    shape = shape.data
  return arrays_lib.tensor_to_ndarray(tf.zeros(shape, dtype=dtype)) 
开发者ID:google,项目名称:trax,代码行数:20,代码来源:array_ops.py

示例2: zeros_like

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import zeros [as 别名]
def zeros_like(a, dtype=None):
  """Returns an array of zeros with the shape and type of the input array.

  Args:
    a: array_like. Could be an ndarray, a Tensor or any object that can be
      converted to a Tensor using `tf.convert_to_tensor`.
    dtype: Optional, defaults to dtype of the input array. The type of the
      resulting ndarray. Could be a python type, a NumPy type or a TensorFlow
      `DType`.

  Returns:
    An ndarray.
  """
  if isinstance(a, arrays_lib.ndarray):
    a = a.data
  if dtype is None:
    # We need to let utils.result_type decide the dtype, not tf.zeros_like
    dtype = utils.result_type(a)
  else:
    # TF and numpy has different interpretations of Python types such as
    # `float`, so we let `utils.result_type` decide.
    dtype = utils.result_type(dtype)
  dtype = tf.as_dtype(dtype)  # Work around b/149877262
  return arrays_lib.tensor_to_ndarray(tf.zeros_like(a, dtype)) 
开发者ID:google,项目名称:trax,代码行数:26,代码来源:array_ops.py

示例3: tri

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import zeros [as 别名]
def tri(N, M=None, k=0, dtype=None):  # pylint: disable=invalid-name,missing-docstring
  M = M if M is not None else N
  if dtype is not None:
    dtype = utils.result_type(dtype)
  else:
    dtype = dtypes.default_float_type()

  if k < 0:
    lower = -k - 1
    if lower > N:
      r = tf.zeros([N, M], dtype)
    else:
      # Keep as tf bool, since we create an upper triangular matrix and invert
      # it.
      o = tf.ones([N, M], dtype=tf.bool)
      r = tf.cast(tf.math.logical_not(tf.linalg.band_part(o, lower, -1)), dtype)
  else:
    o = tf.ones([N, M], dtype)
    if k > M:
      r = o
    else:
      r = tf.linalg.band_part(o, -1, k)
  return utils.tensor_to_ndarray(r) 
开发者ID:google,项目名称:trax,代码行数:25,代码来源:array_ops.py

示例4: _tf_gcd

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import zeros [as 别名]
def _tf_gcd(x1, x2):
  def _gcd_cond_fn(x1, x2):
    return tf.reduce_any(x2 != 0)
  def _gcd_body_fn(x1, x2):
    # tf.math.mod will raise an error when any element of x2 is 0. To avoid
    # that, we change those zeros to ones. Their values don't matter because
    # they won't be used.
    x2_safe = tf.where(x2 != 0, x2, tf.constant(1, x2.dtype))
    x1, x2 = (tf.where(x2 != 0, x2, x1),
              tf.where(x2 != 0, tf.math.mod(x1, x2_safe),
                       tf.constant(0, x2.dtype)))
    return (tf.where(x1 < x2, x2, x1), tf.where(x1 < x2, x1, x2))
  if (not np.issubdtype(x1.dtype.as_numpy_dtype, np.integer) or
      not np.issubdtype(x2.dtype.as_numpy_dtype, np.integer)):
    raise ValueError("Arguments to gcd must be integers.")
  shape = tf.broadcast_static_shape(x1.shape, x2.shape)
  x1 = tf.broadcast_to(x1, shape)
  x2 = tf.broadcast_to(x2, shape)
  gcd, _ = tf.while_loop(_gcd_cond_fn, _gcd_body_fn,
                         (tf.math.abs(x1), tf.math.abs(x2)))
  return gcd 
开发者ID:google,项目名称:trax,代码行数:23,代码来源:math_ops.py

示例5: test_forward_unconnected_gradient

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import zeros [as 别名]
def test_forward_unconnected_gradient(self):
    t = tf.range(1, 3, dtype=tf.float32)  # Shape [2]
    zeros = tf.zeros([2], dtype=t.dtype)
    func = lambda t: tf.stack([zeros, zeros, zeros], axis=0)  # Shape [3, 2]
    expected_result = [[0.0, 0.0], [0.0, 0.0], [0.0, 0.0]]
    with self.subTest("EagerExecution"):
      fwd_grad = self.evaluate(tff.math.fwd_gradient(
          func, t, unconnected_gradients=tf.UnconnectedGradients.ZERO))
      self.assertEqual(fwd_grad.shape, (3, 2))
      np.testing.assert_allclose(fwd_grad, expected_result)
    with self.subTest("GraphExecution"):
      @tf.function
      def grad_computation():
        y = func(t)
        return tff.math.fwd_gradient(
            y, t, unconnected_gradients=tf.UnconnectedGradients.ZERO)
      fwd_grad = self.evaluate(grad_computation())
      self.assertEqual(fwd_grad.shape, (3, 2))
      np.testing.assert_allclose(fwd_grad, expected_result) 
开发者ID:google,项目名称:tf-quant-finance,代码行数:21,代码来源:gradient_test.py

示例6: test_backward_unconnected_gradient

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import zeros [as 别名]
def test_backward_unconnected_gradient(self):
    t = tf.range(1, 3, dtype=tf.float32)  # Shape [2]
    zeros = tf.zeros([2], dtype=t.dtype)
    expected_result = [0.0, 0.0]
    func = lambda t: tf.stack([zeros, zeros, zeros], axis=0)  # Shape [3, 2]
    with self.subTest("EagerExecution"):
      backward_grad = self.evaluate(tff.math.gradients(
          func, t, unconnected_gradients=tf.UnconnectedGradients.ZERO))
      self.assertEqual(backward_grad.shape, (2,))
      np.testing.assert_allclose(backward_grad, expected_result)
    with self.subTest("GraphExecution"):
      @tf.function
      def grad_computation():
        y = func(t)
        return tff.math.gradients(
            y, t, unconnected_gradients=tf.UnconnectedGradients.ZERO)
      backward_grad = self.evaluate(grad_computation())
      self.assertEqual(backward_grad.shape, (2,))
      np.testing.assert_allclose(backward_grad, expected_result) 
开发者ID:google,项目名称:tf-quant-finance,代码行数:21,代码来源:gradient_test.py

示例7: _make_unit_jacobian

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import zeros [as 别名]
def _make_unit_jacobian(initial_state, params):
  """Creates a unit Jacobian matrix."""
  n = len(initial_state)
  d = [initial_state[i].shape.as_list()[-1] for i in range(n)]
  if None in d:
    raise ValueError("Last dimensions of initial_state Tensors must be known.")
  p = len(params)
  dtype = initial_state[0].dtype

  def make_js_block(i, j):
    shape = initial_state[i].shape.concatenate((d[j],))
    if i != j:
      return tf.zeros(shape, dtype=dtype)
    eye = tf.eye(d[i], dtype=dtype)
    return tf.broadcast_to(eye, shape)

  def make_jp_block(i, j):
    del j
    shape = initial_state[i].shape.concatenate((1,))
    return tf.zeros(shape, dtype=dtype)

  js = [[make_js_block(i, j) for j in range(n)] for i in range(n)]
  jp = [[make_jp_block(i, j) for j in range(p)] for i in range(n)]
  return js, jp 
开发者ID:google,项目名称:tf-quant-finance,代码行数:26,代码来源:custom_loops.py

示例8: _updated_cashflow

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import zeros [as 别名]
def _updated_cashflow(num_times, exercise_index, exercise_value,
                      expected_continuation, cashflow):
  """Revises the cashflow tensor where options will be exercised earlier."""
  do_exercise_bool = exercise_value > expected_continuation
  do_exercise = tf.cast(do_exercise_bool, exercise_value.dtype)
  # Shape [num_samples, payoff_dim]
  scaled_do_exercise = tf.where(do_exercise_bool, exercise_value,
                                tf.zeros_like(exercise_value))
  # This picks out the samples where we now wish to exercise.
  # Shape [num_samples, payoff_dim, 1]
  new_samp_masked = tf.expand_dims(scaled_do_exercise, axis=2)
  # This should be one on the current time step and zero otherwise.
  # This is an array with nonzero entries showing newly exercised payoffs.
  zeros = tf.zeros_like(cashflow)
  mask = tf.equal(tf.range(0, num_times), exercise_index - 1)
  new_cash = tf.where(mask, new_samp_masked, zeros)
  # Has shape [num_samples, payoff_dim, 1]
  old_mask = tf.expand_dims(1 - do_exercise, axis=2)
  mask = tf.range(0, num_times) >= exercise_index
  old_mask = tf.where(mask, old_mask, zeros)
  # Shape [num_samples, payoff_dim, num_times]
  old_cash = old_mask * cashflow
  return new_cash + old_cash 
开发者ID:google,项目名称:tf-quant-finance,代码行数:25,代码来源:lsm_v2.py

示例9: test_maybe_update_along_axis

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import zeros [as 别名]
def test_maybe_update_along_axis(self, dtype):
    """Tests that the values are updated correctly."""
    tensor = tf.ones([5, 4, 3, 2], dtype=dtype)
    new_tensor = tf.zeros([5, 4, 1, 2], dtype=dtype)
    @tf.function
    def maybe_update_along_axis(do_update):
      return utils.maybe_update_along_axis(
          tensor=tensor, new_tensor=new_tensor, axis=1, ind=2,
          do_update=do_update)
    updated_tensor = maybe_update_along_axis(True)
    with self.subTest(name='Shape'):
      self.assertEqual(updated_tensor.shape, tensor.shape)
    with self.subTest(name='UpdatedVals'):
      self.assertAllEqual(updated_tensor[:, 2, :, :],
                          tf.zeros_like(updated_tensor[:, 2, :, :]))
    with self.subTest(name='NotUpdatedVals'):
      self.assertAllEqual(updated_tensor[:, 1, :, :],
                          tf.ones_like(updated_tensor[:, 2, :, :]))
    with self.subTest(name='DoNotUpdateVals'):
      not_updated_tensor = maybe_update_along_axis(False)
      self.assertAllEqual(not_updated_tensor, tensor) 
开发者ID:google,项目名称:tf-quant-finance,代码行数:23,代码来源:utils_test.py

示例10: _exact_discretization_setup

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import zeros [as 别名]
def _exact_discretization_setup(self, dim):
    """Initial setup for efficient computations."""
    self._zero_padding = tf.zeros((dim, 1), dtype=self._dtype)
    self._jump_locations = tf.concat(
        [self._volatility.jump_locations(),
         self._mean_reversion.jump_locations()], axis=-1)
    self._jump_values_vol = self._volatility(self._jump_locations)
    self._jump_values_mr = self._mean_reversion(self._jump_locations)
    if dim == 1:
      self._padded_knots = tf.concat([
          self._zero_padding,
          tf.expand_dims(self._jump_locations[:-1], axis=0)
      ], axis=1)
      self._jump_values_vol = tf.expand_dims(self._jump_values_vol, axis=0)
      self._jump_values_mr = tf.expand_dims(self._jump_values_mr, axis=0)
      self._jump_locations = tf.expand_dims(self._jump_locations, axis=0)

    else:
      self._padded_knots = tf.concat(
          [self._zero_padding, self._jump_locations[:, :-1]], axis=1) 
开发者ID:google,项目名称:tf-quant-finance,代码行数:22,代码来源:vector_hull_white.py

示例11: from_config

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import zeros [as 别名]
def from_config(cls, config):
    """Instantiates an entropy model from a configuration dictionary.

    Arguments:
      config: A `dict`, typically the output of `get_config`.

    Returns:
      An entropy model.
    """
    self = super().from_config(config)
    with self.name_scope:
      # pylint:disable=protected-access
      if config["quantization_offset"]:
        zeros = tf.zeros(self.prior_shape, dtype=self.dtype)
        self._quantization_offset = tf.Variable(
            zeros, name="quantization_offset")
      else:
        self._quantization_offset = None
      # pylint:enable=protected-access
    return self 
开发者ID:tensorflow,项目名称:compression,代码行数:22,代码来源:continuous_batched.py

示例12: _get_initial_state

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import zeros [as 别名]
def _get_initial_state(self, observation, batch_size):
    text_token_ids = observation[constants.INS_TOKEN_IDS]
    text_enc_outputs, final_state = self._instruction_encoder(text_token_ids)
    if self._ndh_instruction_encoder is not None:
      ndh_text_enc_outputs, ndh_final_state = self._ndh_instruction_encoder(
          text_token_ids)
      mask = tf.equal(observation[constants.PROBLEM_TYPE],
                      constants.PROBLEM_VLN)
      text_enc_outputs = tf.nest.map_structure(
          lambda x, y: tf.compat.v1.where(mask, x, y), text_enc_outputs,
          ndh_text_enc_outputs)
      final_state = tf.nest.map_structure(
          lambda x, y: tf.compat.v1.where(mask, x, y), final_state,
          ndh_final_state)

    if self._ins_classifier is not None:
      # Concatenate all hidden layers' state vectors. Use state.h
      ins_classifier_logits = self._ins_classifier(
          tf.concat([s[0] for s in final_state], axis=1))
    else:
      ins_classifier_logits = tf.zeros(shape=(batch_size, 2))
    return (final_state, text_enc_outputs, ins_classifier_logits) 
开发者ID:google-research,项目名称:valan,代码行数:24,代码来源:mt_agent.py

示例13: testBatchApply

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import zeros [as 别名]
def testBatchApply(self):
    time_dim = 4
    batch_dim = 5
    inputs = {
        'a': tf.zeros(shape=(time_dim, batch_dim)),
        'b': {
            'b_1': tf.ones(shape=(time_dim, batch_dim, 9, 10)),
            'b_2': tf.ones(shape=(time_dim, batch_dim, 6)),
        }
    }

    def f(tensors):
      np.testing.assert_array_almost_equal(
          np.zeros(shape=(time_dim * batch_dim)), tensors['a'].numpy())
      np.testing.assert_array_almost_equal(
          np.ones(shape=(time_dim * batch_dim, 9, 10)),
          tensors['b']['b_1'].numpy())
      np.testing.assert_array_almost_equal(
          np.ones(shape=(time_dim * batch_dim, 6)), tensors['b']['b_2'].numpy())

      return tf.ones(shape=(time_dim * batch_dim, 2))

    result = utils.batch_apply(f, inputs)
    np.testing.assert_array_almost_equal(
        np.ones(shape=(time_dim, batch_dim, 2)), result.numpy()) 
开发者ID:google-research,项目名称:valan,代码行数:27,代码来源:utils_test.py

示例14: _neck

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import zeros [as 别名]
def _neck(self, torso_output, state):
    # Verify state. It could have been reset if done was true.
    expected_state = np.copy(self._current_state.numpy())
    done = self._done[self._timestep]
    for i, d in enumerate(done):
      if d:
        expected_state[i] = np.zeros(self._init_state_size)
    np.testing.assert_array_almost_equal(expected_state, state.numpy())
    # Verify torso_output
    expected_torso_output = np.concatenate([
        np.ones(shape=(self._batch_size, 50)),
        np.zeros(shape=(self._batch_size, 50))
    ],
                                           axis=1)
    np.testing.assert_array_almost_equal(expected_torso_output,
                                         torso_output.numpy())
    self._timestep += 1
    self._current_state = state + 1
    return (tf.ones([self._batch_size, 6]) * self._timestep,
            self._current_state) 
开发者ID:google-research,项目名称:valan,代码行数:22,代码来源:base_agent_test.py

示例15: empty

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import zeros [as 别名]
def empty(shape, dtype=float):  # pylint: disable=redefined-outer-name
  """Returns an empty array with the specified shape and dtype.

  Args:
    shape: A fully defined shape. Could be - NumPy array or a python scalar,
      list or tuple of integers, - TensorFlow tensor/ndarray of integer type and
      rank <=1.
    dtype: Optional, defaults to float. The type of the resulting ndarray. Could
      be a python type, a NumPy type or a TensorFlow `DType`.

  Returns:
    An ndarray.
  """
  return zeros(shape, dtype) 
开发者ID:google,项目名称:trax,代码行数:16,代码来源:array_ops.py


注:本文中的tensorflow.compat.v2.zeros方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。