本文整理汇总了Python中tensorflow.compat.v2.while_loop方法的典型用法代码示例。如果您正苦于以下问题:Python v2.while_loop方法的具体用法?Python v2.while_loop怎么用?Python v2.while_loop使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.compat.v2
的用法示例。
在下文中一共展示了v2.while_loop方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _tf_gcd
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import while_loop [as 别名]
def _tf_gcd(x1, x2):
def _gcd_cond_fn(x1, x2):
return tf.reduce_any(x2 != 0)
def _gcd_body_fn(x1, x2):
# tf.math.mod will raise an error when any element of x2 is 0. To avoid
# that, we change those zeros to ones. Their values don't matter because
# they won't be used.
x2_safe = tf.where(x2 != 0, x2, tf.constant(1, x2.dtype))
x1, x2 = (tf.where(x2 != 0, x2, x1),
tf.where(x2 != 0, tf.math.mod(x1, x2_safe),
tf.constant(0, x2.dtype)))
return (tf.where(x1 < x2, x2, x1), tf.where(x1 < x2, x1, x2))
if (not np.issubdtype(x1.dtype.as_numpy_dtype, np.integer) or
not np.issubdtype(x2.dtype.as_numpy_dtype, np.integer)):
raise ValueError("Arguments to gcd must be integers.")
shape = tf.broadcast_static_shape(x1.shape, x2.shape)
x1 = tf.broadcast_to(x1, shape)
x2 = tf.broadcast_to(x2, shape)
gcd, _ = tf.while_loop(_gcd_cond_fn, _gcd_body_fn,
(tf.math.abs(x1), tf.math.abs(x2)))
return gcd
示例2: _while_loop
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import while_loop [as 别名]
def _while_loop(*, dim, steps_num, current_state,
drift_fn, volatility_fn, wiener_mean,
num_samples, times, dt, sqrt_dt, time_step, num_requested_times,
keep_mask, swap_memory, random_type, seed, normal_draws):
"""Smaple paths using tf.while_loop."""
cond_fn = lambda i, *args: i < steps_num
def step_fn(i, written_count, current_state, result):
return _euler_step(
i=i,
written_count=written_count,
current_state=current_state,
result=result,
drift_fn=drift_fn,
volatility_fn=volatility_fn,
wiener_mean=wiener_mean,
num_samples=num_samples,
times=times,
dt=dt,
sqrt_dt=sqrt_dt,
keep_mask=keep_mask,
random_type=random_type,
seed=seed,
normal_draws=normal_draws)
maximum_iterations = (tf.cast(1. / time_step, dtype=tf.int32)
+ tf.size(times))
result = tf.zeros((num_samples, num_requested_times, dim),
dtype=current_state.dtype)
_, _, _, result = tf.while_loop(
cond_fn, step_fn, (0, 0, current_state, result),
maximum_iterations=maximum_iterations,
swap_memory=swap_memory)
return result
示例3: create_tf_while_loop_fn
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import while_loop [as 别名]
def create_tf_while_loop_fn(step_fn):
"""Create a multiple steps function driven by tf.while_loop on the host.
Args:
step_fn: A function which takes `iterator` as input.
Returns:
A callable defined as the `loop_fn` defination below.
"""
@tf.function
def loop_fn(iterator, num_steps):
"""A loop function with multiple steps.
Args:
iterator: A nested structure of tf.data `Iterator` or
`DistributedIterator`.
num_steps: The number of steps in the loop. Must be a tf.Tensor.
"""
if not isinstance(num_steps, tf.Tensor):
raise ValueError("`num_steps` should be an `tf.Tensor`. Python object "
"may cause retracing.")
for _ in tf.range(num_steps):
step_fn(iterator)
return loop_fn
示例4: sample_paths
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import while_loop [as 别名]
def sample_paths(self,
times,
num_samples=1,
initial_state=None,
random_type=None,
seed=None,
swap_memory=True,
name=None,
**kwargs):
"""Returns a sample of paths from the process.
Generates samples of paths from the process at the specified time points.
Args:
times: Rank 1 `Tensor` of increasing positive real values. The times at
which the path points are to be evaluated.
num_samples: Positive scalar `int`. The number of paths to draw.
initial_state: `Tensor` of shape `[dim]`. The initial state of the
process.
Default value: None which maps to a zero initial state.
random_type: Enum value of `RandomType`. The type of (quasi)-random number
generator to use to generate the paths.
Default value: None which maps to the standard pseudo-random numbers.
seed: Python `int`. The random seed to use. If not supplied, no seed is
set.
swap_memory: Whether GPU-CPU memory swap is enabled for this op. See
equivalent flag in `tf.while_loop` documentation for more details.
Useful when computing a gradient of the op since `tf.while_loop` is used
to propagate stochastic process in time.
name: str. The name to give this op. If not supplied, default name of
`sample_paths` is used.
**kwargs: parameters, specific to Euler schema: `grid_step` is rank 0 real
`Tensor` - maximal distance between points in grid in Euler schema. Note
that Euler sampling is only used if it is not possible to do exact
sampling because total drift or total covariance are unavailable.
Returns:
A real `Tensor` of shape [num_samples, k, n] where `k` is the size of the
`times`, `n` is the dimension of the process.
"""
if self._total_drift_fn is None or self._total_covariance_fn is None:
return super(BrownianMotion, self).sample_paths(
times,
num_samples=num_samples,
initial_state=initial_state,
random_type=random_type,
seed=seed,
name=name,
**kwargs)
default_name = self._name + '_sample_path'
with tf.compat.v1.name_scope(
name, default_name=default_name, values=[times, initial_state]):
end_times = tf.convert_to_tensor(times, dtype=self.dtype())
start_times = tf.concat(
[tf.zeros([1], dtype=end_times.dtype), end_times[:-1]], axis=0)
paths = self._exact_sampling(end_times, start_times, num_samples,
initial_state, random_type, seed)
if initial_state is not None:
return paths + initial_state
return paths
示例5: sample_paths
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import while_loop [as 别名]
def sample_paths(self,
times,
num_samples=1,
initial_state=None,
random_type=None,
seed=None,
swap_memory=True,
name=None,
**kwargs):
"""Returns a sample of paths from the process.
The default implementation uses Euler schema. However, for particular types
of Ito processes more efficient schemes can be used.
Args:
times: Rank 1 `Tensor` of increasing positive real values. The times at
which the path points are to be evaluated.
num_samples: Positive scalar `int`. The number of paths to draw.
initial_state: `Tensor` of shape `[dim]`. The initial state of the
process.
Default value: None which maps to a zero initial state.
random_type: Enum value of `RandomType`. The type of (quasi)-random number
generator to use to generate the paths.
Default value: None which maps to the standard pseudo-random numbers.
seed: Python `int`. The random seed to use. If not supplied, no seed is
set.
swap_memory: Whether GPU-CPU memory swap is enabled for this op. See
equivalent flag in `tf.while_loop` documentation for more details.
Useful when computing a gradient of the op since `tf.while_loop` is used
to propagate stochastic process in time.
name: str. The name to give this op. If not supplied, default name of
`sample_paths` is used.
**kwargs: parameters, specific to Euler schema: `grid_step` is rank 0 real
`Tensor` - maximal distance between points in grid in Euler schema.
Returns:
A real `Tensor` of shape [num_samples, k, n] where `k` is the size of the
`times`, `n` is the dimension of the process.
"""
if self.drift_fn() is None or self.volatility_fn() is None:
raise NotImplementedError(
'In order to use Euler scheme, both drift_fn and volatility_fn '
'should be provided.')
default_name = self.name() + '_sample_paths'
with tf.compat.v1.name_scope(
name, default_name=default_name, values=[times, initial_state]):
if initial_state is None:
initial_state = tf.zeros(self._dim, dtype=self._dtype)
times = tf.convert_to_tensor(times, dtype=self._dtype)
initial_state = tf.convert_to_tensor(
initial_state, dtype=self._dtype, name='initial_state')
num_requested_times = tf.shape(times)[-1]
grid_step = kwargs['grid_step']
times, keep_mask = self._prepare_grid(times, grid_step)
return self._sample_paths(times, grid_step, keep_mask,
num_requested_times, num_samples, initial_state,
random_type, seed, swap_memory)
示例6: _sample_paths
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import while_loop [as 别名]
def _sample_paths(self, times, grid_step, keep_mask, num_requested_times,
num_samples, initial_state, random_type, seed, swap_memory):
"""Returns a sample of paths from the process."""
dt = times[1:] - times[:-1]
sqrt_dt = tf.sqrt(dt)
current_state = initial_state + tf.zeros(
[num_samples, self.dim()], dtype=initial_state.dtype)
steps_num = tf.shape(dt)[-1]
wiener_mean = tf.zeros((self.dim(), 1), dtype=self._dtype)
cond_fn = lambda i, *args: i < steps_num
def step_fn(i, written_count, current_state, result):
"""Performs one step of Euler scheme."""
current_time = times[i + 1]
dw = random_ops.mv_normal_sample((num_samples,),
mean=wiener_mean,
random_type=random_type,
seed=seed)
dw = dw * sqrt_dt[i]
dt_inc = dt[i] * self.drift_fn()(current_time, current_state) # pylint: disable=not-callable
dw_inc = tf.squeeze(
tf.matmul(self.volatility_fn()(current_time, current_state), dw), -1) # pylint: disable=not-callable
next_state = current_state + dt_inc + dw_inc
def write_next_state_to_result():
# Replace result[:, written_count, :] with next_state.
one_hot = tf.one_hot(written_count, depth=num_requested_times)
mask = tf.expand_dims(one_hot > 0, axis=-1)
return tf.where(mask, tf.expand_dims(next_state, axis=1), result)
# Keep only states for times requested by user.
result = tf.cond(keep_mask[i + 1],
write_next_state_to_result,
lambda: result)
written_count += tf.cast(keep_mask[i + 1], dtype=tf.int32)
return i + 1, written_count, next_state, result
# Maximum number iterations is passed to the while loop below. It improves
# performance of the while loop on a GPU and is needed for XLA-compilation
# comptatiblity
maximum_iterations = (
tf.cast(1. / grid_step, dtype=tf.int32) + tf.size(times))
result = tf.zeros((num_samples, num_requested_times, self.dim()))
_, _, _, result = tf.compat.v1.while_loop(
cond_fn,
step_fn, (0, 0, current_state, result),
maximum_iterations=maximum_iterations,
swap_memory=swap_memory)
return result
示例7: _sample
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import while_loop [as 别名]
def _sample(*, dim, drift_fn, volatility_fn, times, time_step, keep_mask,
num_requested_times,
num_samples, initial_state, random_type,
seed, swap_memory, skip, precompute_normal_draws,
watch_params,
time_indices,
dtype):
"""Returns a sample of paths from the process using Euler method."""
dt = times[1:] - times[:-1]
sqrt_dt = tf.sqrt(dt)
current_state = initial_state + tf.zeros([num_samples, dim],
dtype=initial_state.dtype)
if dt.shape.is_fully_defined():
steps_num = dt.shape.as_list()[-1]
else:
steps_num = tf.shape(dt)[-1]
# In order to use low-discrepancy random_type we need to generate the sequence
# of independent random normals upfront. We also precompute random numbers
# for stateless random type in order to ensure independent samples for
# multiple function calls whith different seeds.
if precompute_normal_draws or random_type in (
random.RandomType.SOBOL,
random.RandomType.HALTON,
random.RandomType.HALTON_RANDOMIZED,
random.RandomType.STATELESS,
random.RandomType.STATELESS_ANTITHETIC):
normal_draws = utils.generate_mc_normal_draws(
num_normal_draws=dim, num_time_steps=steps_num,
num_sample_paths=num_samples, random_type=random_type,
dtype=dtype, seed=seed, skip=skip)
wiener_mean = None
else:
# If pseudo or anthithetic sampling is used, proceed with random sampling
# at each step.
wiener_mean = tf.zeros((dim,), dtype=dtype, name='wiener_mean')
normal_draws = None
if watch_params is None:
# Use while_loop if `watch_params` is not passed
return _while_loop(
dim=dim, steps_num=steps_num,
current_state=current_state,
drift_fn=drift_fn, volatility_fn=volatility_fn, wiener_mean=wiener_mean,
num_samples=num_samples, times=times,
dt=dt, sqrt_dt=sqrt_dt, time_step=time_step, keep_mask=keep_mask,
num_requested_times=num_requested_times,
swap_memory=swap_memory,
random_type=random_type, seed=seed, normal_draws=normal_draws)
else:
# Use custom for_loop if `watch_params` is specified
return _for_loop(
steps_num=steps_num, current_state=current_state,
drift_fn=drift_fn, volatility_fn=volatility_fn, wiener_mean=wiener_mean,
num_samples=num_samples, times=times,
dt=dt, sqrt_dt=sqrt_dt, time_indices=time_indices,
keep_mask=keep_mask, watch_params=watch_params,
random_type=random_type, seed=seed, normal_draws=normal_draws)
示例8: estimate_tails
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import while_loop [as 别名]
def estimate_tails(func, target, shape, dtype):
"""Estimates approximate tail quantiles.
This runs a simple Adam iteration to determine tail quantiles. The
objective is to find an `x` such that:
```
func(x) == target
```
For instance, if `func` is a CDF and the target is a quantile value, this
would find the approximate location of that quantile. Note that `func` is
assumed to be monotonic. When each tail estimate has passed the optimal value
of `x`, the algorithm does 10 additional iterations and then stops.
This operation is vectorized. The tensor shape of `x` is given by `shape`, and
`target` must have a shape that is broadcastable to the output of `func(x)`.
Arguments:
func: A callable that computes cumulative distribution function, survival
function, or similar.
target: The desired target value.
shape: The shape of the `tf.Tensor` representing `x`.
dtype: The `tf.dtypes.Dtype` of the computation (and the return value).
Returns:
A `tf.Tensor` representing the solution (`x`).
"""
with tf.name_scope("estimate_tails"):
dtype = tf.as_dtype(dtype)
shape = tf.convert_to_tensor(shape, tf.int32)
target = tf.convert_to_tensor(target, dtype)
def loop_cond(tails, m, v, count):
del tails, m, v # unused
return tf.reduce_min(count) < 10
def loop_body(tails, m, v, count):
with tf.GradientTape(watch_accessed_variables=False) as tape:
tape.watch(tails)
loss = abs(func(tails) - target)
grad = tape.gradient(loss, tails)
m = .5 * m + .5 * grad # Adam mean estimate.
v = .9 * v + .1 * tf.square(grad) # Adam variance estimate.
tails -= .5 * m / (tf.sqrt(v) + 1e-7)
# Start counting when the gradient flips sign (note that this assumes
# `tails` is initialized to zero).
count = tf.where(
tf.math.logical_or(count > 0, tails * grad > 0),
count + 1, count)
return tails, m, v, count
init_tails = tf.zeros(shape, dtype=dtype)
init_m = tf.zeros(shape, dtype=dtype)
init_v = tf.ones(shape, dtype=dtype)
init_count = tf.zeros(shape, dtype=tf.int32)
return tf.while_loop(
loop_cond, loop_body, (init_tails, init_m, init_v, init_count),
back_prop=False)[0]