当前位置: 首页>>代码示例>>Python>>正文


Python v2.uint8方法代码示例

本文整理汇总了Python中tensorflow.compat.v2.uint8方法的典型用法代码示例。如果您正苦于以下问题:Python v2.uint8方法的具体用法?Python v2.uint8怎么用?Python v2.uint8使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.compat.v2的用法示例。


在下文中一共展示了v2.uint8方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _info

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import uint8 [as 别名]
def _info(self):
        return tfds.core.DatasetInfo(
            builder=self,
            description=_DESCRIPTION,
            features=tfds.features.FeaturesDict(
                {
                    "images": {
                        "clean": tfds.features.Image(
                            shape=[224, 224, 3], dtype=tf.uint8, encoding_format="png"
                        ),
                        "adversarial_univperturbation": tfds.features.Image(
                            shape=[224, 224, 3], dtype=tf.uint8, encoding_format="png"
                        ),
                        "adversarial_univpatch": tfds.features.Image(
                            shape=[224, 224, 3], dtype=tf.uint8, encoding_format="png"
                        ),
                    },
                    "label": tfds.features.ClassLabel(names=_LABELS),
                    "imagename": tfds.features.Text(),
                }
            ),
            supervised_keys=("images", "label"),
            homepage=_URL,
            citation=_CITATION,
        ) 
开发者ID:twosixlabs,项目名称:armory,代码行数:27,代码来源:resisc45_densenet121_univpatch_and_univperturbation_adversarial_224x224.py

示例2: _info

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import uint8 [as 别名]
def _info(self):
        return tfds.core.DatasetInfo(
            builder=self,
            description=_DESCRIPTION,
            features=tfds.features.FeaturesDict(
                {
                    "images": {
                        "clean": tfds.features.Tensor(
                            shape=[224, 224, 3], dtype=tf.uint8
                        ),
                        "adversarial": tfds.features.Tensor(
                            shape=[224, 224, 3], dtype=tf.uint8
                        ),
                    },
                    "label": tfds.features.Tensor(shape=(), dtype=tf.int64),
                }
            ),
            supervised_keys=("images", "label"),
        ) 
开发者ID:twosixlabs,项目名称:armory,代码行数:21,代码来源:imagenet_adversarial.py

示例3: _info

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import uint8 [as 别名]
def _info(self):
    features = {
        'image':
            tfds.features.Image(encoding_format='jpeg'),
        'image/filename':
            tfds.features.Text(),
        'faces':
            tfds.features.Sequence({
                'bbox': tfds.features.BBoxFeature(),
                'blur': tf.uint8,
                'expression': tf.bool,
                'illumination': tf.bool,
                'occlusion': tf.uint8,
                'pose': tf.bool,
                'invalid': tf.bool,
            }),
    }
    return tfds.core.DatasetInfo(
        builder=self,
        description=_DESCRIPTION,
        features=tfds.features.FeaturesDict(features),
        homepage=_PROJECT_URL,
        citation=_CITATION,
    ) 
开发者ID:tensorflow,项目名称:datasets,代码行数:26,代码来源:wider_face.py

示例4: _run_inference_on_images

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import uint8 [as 别名]
def _run_inference_on_images(self, image):
    """Cast image to float and run inference.

    Args:
      image: uint8 Tensor of shape [1, None, None, 3]
    Returns:
      Tensor dictionary holding detections.
    """
    label_id_offset = 1

    image = tf.cast(image, tf.float32)
    image, shapes = self._model.preprocess(image)
    prediction_dict = self._model.predict(image, shapes)
    detections = self._model.postprocess(prediction_dict, shapes)
    classes_field = fields.DetectionResultFields.detection_classes
    detections[classes_field] = (
        tf.cast(detections[classes_field], tf.float32) + label_id_offset)

    for key, val in detections.items():
      detections[key] = tf.cast(val, tf.float32)

    return detections 
开发者ID:tensorflow,项目名称:models,代码行数:24,代码来源:exporter_lib_v2.py

示例5: _generate_examples

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import uint8 [as 别名]
def _generate_examples(self, path):
        """Yields examples."""

        clean_key = "clean"
        adversarial_key = "adversarial"

        def _parse(serialized_example):
            ds_features = {
                "height": tf.io.FixedLenFeature([], tf.int64),
                "width": tf.io.FixedLenFeature([], tf.int64),
                "label": tf.io.FixedLenFeature([], tf.int64),
                "adv-image": tf.io.FixedLenFeature([], tf.string),
                "clean-image": tf.io.FixedLenFeature([], tf.string),
            }
            example = tf.io.parse_single_example(serialized_example, ds_features)

            img_clean = tf.io.decode_raw(example["clean-image"], tf.float32)
            img_adv = tf.io.decode_raw(example["adv-image"], tf.float32)
            # float values are integers in [0.0, 255.0] for clean and adversarial
            img_clean = tf.cast(img_clean, tf.uint8)
            img_clean = tf.reshape(img_clean, (example["height"], example["width"], 3))
            img_adv = tf.cast(img_adv, tf.uint8)
            img_adv = tf.reshape(img_adv, (example["height"], example["width"], 3))
            return {clean_key: img_clean, adversarial_key: img_adv}, example["label"]

        ds = tf.data.TFRecordDataset(filenames=[path])
        ds = ds.map(lambda x: _parse(x))
        default_graph = tf.compat.v1.keras.backend.get_session().graph
        ds = tfds.as_numpy(ds, graph=default_graph)

        for i, (img, label) in enumerate(ds):
            yield str(i), {
                "images": img,
                "label": label,
            } 
开发者ID:twosixlabs,项目名称:armory,代码行数:37,代码来源:imagenet_adversarial.py

示例6: _canonicalize_jit_arg

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import uint8 [as 别名]
def _canonicalize_jit_arg(x):
  if isinstance(x, tf_np.ndarray):
    return x.data
  else:
    try:
      # We need to convert `int` to the most precise dtype, otherwise the dtype
      # of the result may be different from numpy's. For example, when a binary
      # op takes in a Python integer 5 and an array of uint32, numpy will pick
      # uint32 as 5's dtype, while tf.convert_to_tensor will choose int32 which
      # will cause the two arguments to be promoted to int64. We pick uint8
      # here, which will be promoted to uint32 by the binary op.
      # Note that we prefer unsigned int to signed int when both are equally
      # precise. For example, for 5, we pick uint8 instead of int8. There is no
      # reason to prefer one to the other, because for each there is a case
      # where the behavior diverges from numpy. If we prefer signed int,
      # consider the case where the first operand is 5 and the second is
      # 2**64-1. Numpy picks uint64 as the result dtype, but because we choose a
      # signed type for 5 such as int8, the result type will be float64. On the
      # other hand, if we prefer unsigned int, consider the case where the first
      # operand is 2**31-1 and the second is -1. Numpy will pick int32, but
      # because we choose uint32 for 2*32-1, the result will be int64. The root
      # of the problem is that `jit` converts `int` to tensors (hence committing
      # to a dtype) too early, when we don't have enough information about the
      # jitted function (e.g. which subset of the arguments should be promoted
      # together using np.result_type). tf.function doesn't have this problem
      # because it doesn't convert `int` to tensors. jax.jit doesn't have this
      # problem because it converts `int` to "int tracer" which doesn't commit
      # to a dtype.
      # TODO(wangpeng): Revisit this design and see whether we can improve `jit`
      #   and tf.function.
      dtype = most_precise_int_dtype(x)
      if dtype is None and isinstance(x, float):
        dtype = tf_np.default_float_type()
      return tf.convert_to_tensor(value=x, dtype=dtype)
    except (TypeError, ValueError):
      return x 
开发者ID:google,项目名称:trax,代码行数:38,代码来源:extensions.py

示例7: _convert_uint8_to_bfloat16

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import uint8 [as 别名]
def _convert_uint8_to_bfloat16(ts: Any):
  """Casts uint8 to bfloat16 if input is uint8.

  Args:
    ts: any tensor or nested tensor structure, such as EnvOutput.

  Returns:
    Converted structure.
  """
  return tf.nest.map_structure(
      lambda t: tf.cast(t, tf.bfloat16) if t.dtype == tf.uint8 else t, ts) 
开发者ID:google-research,项目名称:valan,代码行数:13,代码来源:learner.py

示例8: fake_image_dataset

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import uint8 [as 别名]
def fake_image_dataset(*args, **kwargs):
  num_examples = 30
  return tf.data.Dataset.from_generator(
      lambda: ({
          "image": np.ones(shape=(32, 32, 3), dtype=np.uint8),
          "label": i % 10,
      } for i in range(num_examples)),
      output_types={"image": tf.uint8, "label": tf.int64},
      output_shapes={"image": (32, 32, 3), "label": ()},
  ) 
开发者ID:tensorflow,项目名称:hub,代码行数:12,代码来源:search_test.py

示例9: get_dummy_input

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import uint8 [as 别名]
def get_dummy_input(self, input_type):
    """Get dummy input for the given input type."""

    if input_type == 'image_tensor':
      return np.zeros(shape=(1, 20, 20, 3), dtype=np.uint8)
    if input_type == 'float_image_tensor':
      return np.zeros(shape=(1, 20, 20, 3), dtype=np.float32)
    elif input_type == 'encoded_image_string_tensor':
      image = Image.new('RGB', (20, 20))
      byte_io = io.BytesIO()
      image.save(byte_io, 'PNG')
      return [byte_io.getvalue()]
    elif input_type == 'tf_example':
      image_tensor = tf.zeros((20, 20, 3), dtype=tf.uint8)
      encoded_jpeg = tf.image.encode_jpeg(tf.constant(image_tensor)).numpy()
      example = tf.train.Example(
          features=tf.train.Features(
              feature={
                  'image/encoded':
                  dataset_util.bytes_feature(encoded_jpeg),
                  'image/format':
                  dataset_util.bytes_feature(six.b('jpeg')),
                  'image/source_id':
                  dataset_util.bytes_feature(six.b('image_id')),
              })).SerializeToString()
      return [example] 
开发者ID:tensorflow,项目名称:models,代码行数:28,代码来源:exporter_lib_tf2_test.py

示例10: __call__

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import uint8 [as 别名]
def __call__(self, input_tensor):
    with tf.device('cpu:0'):
      image = tf.map_fn(
          _decode_image,
          elems=input_tensor,
          dtype=tf.uint8,
          parallel_iterations=32,
          back_prop=False)
    return self._run_inference_on_images(image) 
开发者ID:tensorflow,项目名称:models,代码行数:11,代码来源:exporter_lib_v2.py


注:本文中的tensorflow.compat.v2.uint8方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。