当前位置: 首页>>代码示例>>Python>>正文


Python v2.transpose方法代码示例

本文整理汇总了Python中tensorflow.compat.v2.transpose方法的典型用法代码示例。如果您正苦于以下问题:Python v2.transpose方法的具体用法?Python v2.transpose怎么用?Python v2.transpose使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.compat.v2的用法示例。


在下文中一共展示了v2.transpose方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: reshape

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import transpose [as 别名]
def reshape(a, newshape, order='C'):
  """order argument can only b 'C' or 'F'."""
  if order not in {'C', 'F'}:
    raise ValueError('Unsupported order argument {}'.format(order))

  a = asarray(a)
  if isinstance(newshape, arrays_lib.ndarray):
    newshape = newshape.data
  if isinstance(newshape, int):
    newshape = [newshape]

  if order == 'F':
    r = tf.transpose(tf.reshape(tf.transpose(a.data), newshape[::-1]))
  else:
    r = tf.reshape(a.data, newshape)

  return utils.tensor_to_ndarray(r) 
开发者ID:google,项目名称:trax,代码行数:19,代码来源:array_ops.py

示例2: transpose

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import transpose [as 别名]
def transpose(a, axes=None):
  """Permutes dimensions of the array.

  Args:
    a: array_like. Could be an ndarray, a Tensor or any object that can
      be converted to a Tensor using `tf.convert_to_tensor`.
    axes: array_like. A list of ints with length rank(a) or None specifying the
      order of permutation. The i'th dimension of the output array corresponds
      to axes[i]'th dimension of the `a`. If None, the axes are reversed.

  Returns:
    An ndarray.
  """
  a = asarray(a)
  if axes is not None:
    axes = asarray(axes)
  return utils.tensor_to_ndarray(tf.transpose(a=a.data, perm=axes)) 
开发者ID:google,项目名称:trax,代码行数:19,代码来源:array_ops.py

示例3: rot90

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import transpose [as 别名]
def rot90(m, k=1, axes=(0, 1)):  # pylint: disable=missing-docstring
  m_rank = tf.rank(m)
  ax1, ax2 = utils._canonicalize_axes(axes, m_rank)  # pylint: disable=protected-access

  k = k % 4
  if k == 0:
    return m
  elif k == 2:
    return flip(flip(m, ax1), ax2)
  else:
    perm = tf.range(m_rank)
    perm = tf.tensor_scatter_nd_update(perm, [[ax1], [ax2]], [ax2, ax1])

    if k == 1:
      return transpose(flip(m, ax2), perm)
    else:
      return flip(transpose(m, perm), ax2) 
开发者ID:google,项目名称:trax,代码行数:19,代码来源:array_ops.py

示例4: _apply_tridiag_matrix_explicitly

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import transpose [as 别名]
def _apply_tridiag_matrix_explicitly(values, superdiag, diag, subdiag,
                                     dim, n_dims):
  """Applies tridiagonal matrix explicitly."""
  perm = _get_permutation(values, n_dims, dim)

  # Make the given dimension the last one in the tensors, treat all the
  # other spatial dimensions as batch dimensions.
  if perm is not None:
    values = tf.transpose(values, perm)
    superdiag, diag, subdiag = (
        tf.transpose(c, perm) for c in (superdiag, diag, subdiag))

  values = tf.squeeze(
      tf.linalg.tridiagonal_matmul((superdiag, diag, subdiag),
                                   tf.expand_dims(values, -1),
                                   diagonals_format='sequence'), -1)

  # Transpose back to how it was.
  if perm is not None:
    values = tf.transpose(values, perm)
  return values 
开发者ID:google,项目名称:tf-quant-finance,代码行数:23,代码来源:douglas_adi.py

示例5: _get_parameters

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import transpose [as 别名]
def _get_parameters(times, *params):
  """Gets parameter values at at specified `times`."""
  res = []
  for param in params:
    if isinstance(param, piecewise.PiecewiseConstantFunc):
      jump_locations = param.jump_locations()
      if len(jump_locations.shape) > 1:
        # If `jump_locations` has batch dimension, transpose the result
        # Shape [num_times, dim]
        res.append(tf.transpose(param(times)))
      else:
        # Shape [num_times, dim]
        res.append(param(times))
    elif callable(param):
      # Used only in drift and volatility computation.
      # Here `times` is of shape [1]
      t = tf.squeeze(times)
      # The result has to have shape [1] + param.shape
      res.append(tf.expand_dims(param(t), 0))
    else:
      res.append(param + tf.zeros(times.shape + param.shape, dtype=times.dtype))
  return res 
开发者ID:google,项目名称:tf-quant-finance,代码行数:24,代码来源:vector_hull_white.py

示例6: _apply_op

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import transpose [as 别名]
def _apply_op(self, op_fn):
    """Applies given tensor-to-tensor op.

    This method is used for implementing ops that take a tensor and return a new
    tensor, such as tf.expand_dims or tf.transpose. Implementing wrappers
    should apply `op_fn` to the backing tensor(s) and return an new wrapper
    instance with the updated backing tensor.

    Args:
       op_fn: Callable that applies tensor-to-tensor op to the given Tensor.
        E.g. applies tf.expand_dims.

    Returns:
      A TensorWrapper instance with updated backing tensor(s).
    """
    raise NotImplementedError() 
开发者ID:google,项目名称:tf-quant-finance,代码行数:18,代码来源:tensor_wrapper.py

示例7: _info

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import transpose [as 别名]
def _info(self):
    return tfds.core.DatasetInfo(
        builder=self,
        description=(
            "The EMNIST dataset is a set of handwritten character digits "
            "derived from the NIST Special Database 19 and converted to "
            "a 28x28 pixel image format and dataset structure that directly "
            "matches the MNIST dataset.\n\n"
            "Note: Like the original EMNIST data, images provided here are "
            "inverted horizontally and rotated 90 anti-clockwise. You can use "
            "`tf.transpose` within `ds.map` to convert the images to a "
            "human-friendlier format."),
        features=tfds.features.FeaturesDict({
            "image":
                tfds.features.Image(shape=MNIST_IMAGE_SHAPE),
            "label":
                tfds.features.ClassLabel(
                    num_classes=self.builder_config.class_number),
        }),
        supervised_keys=("image", "label"),
        homepage=("https://www.nist.gov/itl/products-and-services/"
                  "emnist-dataset"),
        citation=_EMNIST_CITATION,
    ) 
开发者ID:tensorflow,项目名称:datasets,代码行数:26,代码来源:mnist.py

示例8: labels_of_top_ranked_predictions_in_batch

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import transpose [as 别名]
def labels_of_top_ranked_predictions_in_batch(labels, predictions):
  """Applying tf.metrics.mean to this gives precision at 1.

  Args:
    labels: minibatch of dense 0/1 labels, shape [batch_size rows, num_classes]
    predictions: minibatch of predictions of the same shape

  Returns:
    one-dimension tensor top_labels, where top_labels[i]=1.0 iff the
    top-scoring prediction for batch element i has label 1.0
  """
  indices_of_top_preds = tf.cast(tf.argmax(input=predictions, axis=1), tf.int32)
  batch_size = tf.reduce_sum(input_tensor=tf.ones_like(indices_of_top_preds))
  row_indices = tf.range(batch_size)
  thresholded_labels = tf.where(labels > 0.0, tf.ones_like(labels),
                                tf.zeros_like(labels))
  label_indices_to_gather = tf.transpose(
      a=tf.stack([row_indices, indices_of_top_preds]))
  return tf.gather_nd(thresholded_labels, label_indices_to_gather) 
开发者ID:google-research,项目名称:language,代码行数:21,代码来源:util.py

示例9: set_initial_value

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import transpose [as 别名]
def set_initial_value(self, rel_name, m):
    """Provide value that will be used to initialize a relation matrix.

    Args:
      rel_name: string name of relation
      m: a matrix that can used as argument to scipy.coo_matrix, for a sparse
        relation, or any matrix, for a dense relation

    Raises:
      RelationNameError: If the relation cannot be found.
      ValueError: If the relation and initial_value have different shapes.
    """
    if not self.is_relation(rel_name):
      raise RelationNameError(rel_name, 'Relation is not defined.')
    expected_shape = self.get_shape(rel_name)
    if m.shape[1] != expected_shape[1]:
      raise ValueError(
          'relation and initial_value have different columns: %d vs %d' %
          (expected_shape[1], m.shape[1]))
    if self.is_dense(rel_name):
      self._np_initval[rel_name] = m.transpose()
    else:
      self._np_initval[rel_name] = scipy.sparse.coo_matrix(m.transpose()) 
开发者ID:google-research,项目名称:language,代码行数:25,代码来源:__init__.py

示例10: _prob

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import transpose [as 别名]
def _prob(self, y):
    """Called by the base class to compute likelihoods."""
    # Convert to (channels, 1, batch) format by collapsing dimensions and then
    # commuting channels to front.
    y = tf.broadcast_to(
        y, tf.broadcast_dynamic_shape(tf.shape(y), self.batch_shape_tensor()))
    shape = tf.shape(y)
    y = tf.reshape(y, (-1, 1, self.batch_shape.num_elements()))
    y = tf.transpose(y, (2, 1, 0))

    # Evaluate densities.
    # We can use the special rule below to only compute differences in the left
    # tail of the sigmoid. This increases numerical stability: sigmoid(x) is 1
    # for large x, 0 for small x. Subtracting two numbers close to 0 can be done
    # with much higher precision than subtracting two numbers close to 1.
    lower = self._logits_cumulative(y - .5)
    upper = self._logits_cumulative(y + .5)
    # Flip signs if we can move more towards the left tail of the sigmoid.
    sign = tf.stop_gradient(-tf.math.sign(lower + upper))
    p = abs(tf.sigmoid(sign * upper) - tf.sigmoid(sign * lower))

    # Convert back to (broadcasted) input tensor shape.
    p = tf.transpose(p, (2, 1, 0))
    p = tf.reshape(p, shape)
    return p 
开发者ID:tensorflow,项目名称:compression,代码行数:27,代码来源:deep_factorized.py

示例11: swapaxes

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import transpose [as 别名]
def swapaxes(a, axis1, axis2):  # pylint: disable=missing-docstring
  a = asarray(a)

  a_rank = tf.rank(a)
  if axis1 < 0:
    axis1 += a_rank
  if axis2 < 0:
    axis2 += a_rank

  perm = tf.range(a_rank)
  perm = tf.tensor_scatter_nd_update(perm, [[axis1], [axis2]], [axis2, axis1])
  a = tf.transpose(a, perm)

  return utils.tensor_to_ndarray(a) 
开发者ID:google,项目名称:trax,代码行数:16,代码来源:array_ops.py

示例12: _apply_correction

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import transpose [as 别名]
def _apply_correction(theta, values, explicit_contribution, superdiag, diag,
                      subdiag, inhomog_term_delta, t1, t2, dim, n_dims):
  """Applies correction for the given dimension."""
  rhs = (
      values - theta * explicit_contribution +
      theta * inhomog_term_delta * (t2 - t1))

  # Make the given dimension the last one in the tensors, treat all the
  # other spatial dimensions as batch dimensions.
  perm = _get_permutation(values, n_dims, dim)
  if perm is not None:
    rhs = tf.transpose(rhs, perm)
    superdiag, diag, subdiag = (
        tf.transpose(c, perm) for c in (superdiag, diag, subdiag))

  subdiag = -theta * subdiag * (t2 - t1)
  diag = 1 - theta * diag * (t2 - t1)
  superdiag = -theta * superdiag * (t2 - t1)
  result = tf.linalg.tridiagonal_solve((superdiag, diag, subdiag),
                                       rhs,
                                       diagonals_format='sequence',
                                       partial_pivoting=False)

  # Transpose back to how it was.
  if perm is not None:
    result = tf.transpose(result, perm)
  return result 
开发者ID:google,项目名称:tf-quant-finance,代码行数:29,代码来源:douglas_adi.py

示例13: _expected_exercise_fn

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import transpose [as 别名]
def _expected_exercise_fn(design, continuation_value, exercise_value):
  """Returns the expected continuation value for each path.

  Args:
    design: A real `Tensor` of shape `[basis_size, num_samples]`.
    continuation_value: A `Tensor` of shape `[num_samples, payoff_dim]` and of
      the same dtype as `design`. The optimal value of the option conditional on
      not exercising now or earlier, taking future information into account.
    exercise_value: A `Tensor` of the same shape and dtype as
      `continuation_value`. Value of the option if exercised immideately at
      the current time

  Returns:
    A `Tensor` of the same shape and dtype as `continuation_value` whose
    `(n, v)`-th entry represents the expected continuation value of sample path
    `n` under the `v`-th payoff scheme.
  """
  batch_design = tf.broadcast_to(
      design[..., None], design.shape + [continuation_value.shape[-1]])
  mask = tf.cast(exercise_value > 0, design.dtype)
  # Zero out contributions from samples we'd never exercise at this point (i.e.,
  # these extra observations do not change the regression coefficients).
  masked = tf.transpose(batch_design * mask, perm=(2, 1, 0))
  # For design matrix X and response y, the coefficients beta of the best linear
  # unbiased estimate are contained in the equation X'X beta = X'y. Here `lhs`
  # is X'X and `rhs` is X'y, or rather a tensor of such left hand and right hand
  # sides, one for each payoff dimension.
  lhs = tf.matmul(masked, masked, transpose_a=True)
  # Use pseudo inverse for the regression matrix to ensure stability of the
  # algorithm.
  lhs_pinv = tf.linalg.pinv(lhs)
  rhs = tf.matmul(
      masked,
      tf.expand_dims(tf.transpose(continuation_value), axis=-1),
      transpose_a=True)
  beta = tf.matmul(lhs_pinv, rhs)
  continuation = tf.matmul(tf.transpose(batch_design, perm=(2, 1, 0)), beta)
  return tf.maximum(tf.transpose(tf.squeeze(continuation, -1)), 0.0) 
开发者ID:google,项目名称:tf-quant-finance,代码行数:40,代码来源:lsm_v2.py

示例14: _backward_pde_coeffs

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import transpose [as 别名]
def _backward_pde_coeffs(drift_fn, volatility_fn, discounting):
  """Returns coeffs of the backward PDE."""
  def second_order_coeff_fn(t, coord_grid):
    sigma = volatility_fn(t, _coord_grid_to_mesh_grid(coord_grid))
    sigma_times_sigma_t = tf.linalg.matmul(sigma, sigma, transpose_b=True)

    # We currently have [dim, dim] as innermost dimensions, but the returned
    # tensor must have [dim, dim] as outermost dimensions.
    rank = len(sigma.shape.as_list())
    perm = [rank - 2, rank - 1] + list(range(rank - 2))
    sigma_times_sigma_t = tf.transpose(sigma_times_sigma_t, perm)
    return sigma_times_sigma_t / 2

  def first_order_coeff_fn(t, coord_grid):
    mu = drift_fn(t, _coord_grid_to_mesh_grid(coord_grid))

    # We currently have [dim] as innermost dimension, but the returned
    # tensor must have [dim] as outermost dimension.
    rank = len(mu.shape.as_list())
    perm = [rank - 1] + list(range(rank - 1))
    mu = tf.transpose(mu, perm)
    return mu

  def zeroth_order_coeff_fn(t, coord_grid):
    if not discounting:
      return None
    return -discounting(t, _coord_grid_to_mesh_grid(coord_grid))

  return second_order_coeff_fn, first_order_coeff_fn, zeroth_order_coeff_fn 
开发者ID:google,项目名称:tf-quant-finance,代码行数:31,代码来源:multivariate_geometric_brownian_motion.py

示例15: _sample_paths

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import transpose [as 别名]
def _sample_paths(self,
                    times,
                    num_requested_times,
                    initial_state,
                    num_samples,
                    random_type,
                    seed,
                    skip):
    """Returns a sample of paths from the process."""
    # Normal draws needed for sampling
    normal_draws = utils.generate_mc_normal_draws(
        num_normal_draws=1, num_time_steps=num_requested_times,
        num_sample_paths=num_samples, random_type=random_type,
        seed=seed,
        dtype=self._dtype, skip=skip)
    times = tf.concat([[0], times], -1)
    dt = times[1:] - times[:-1]
    # The logarithm of all the increments between the times.
    log_increments = ((self._mu - self._sigma**2 / 2) * dt
                      + tf.sqrt(dt) * self._sigma
                      * tf.transpose(tf.squeeze(normal_draws, -1)))
    # Since the implementation of tf.math.cumsum is single-threaded we
    # use lower-triangular matrix multiplication instead
    once = tf.ones([num_requested_times, num_requested_times],
                   dtype=self._dtype)
    lower_triangular = tf.linalg.band_part(once, -1, 0)
    cumsum = tf.linalg.matvec(lower_triangular,
                              log_increments)
    samples = initial_state * tf.math.exp(cumsum)
    return tf.expand_dims(samples, -1)

  # TODO(b/152967694): Remove the duplicate methods. 
开发者ID:google,项目名称:tf-quant-finance,代码行数:34,代码来源:univariate_geometric_brownian_motion.py


注:本文中的tensorflow.compat.v2.transpose方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。