本文整理汇总了Python中tensorflow.compat.v2.tile方法的典型用法代码示例。如果您正苦于以下问题:Python v2.tile方法的具体用法?Python v2.tile怎么用?Python v2.tile使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.compat.v2
的用法示例。
在下文中一共展示了v2.tile方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: tile
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import tile [as 别名]
def tile(a, reps):
a = array_ops.array(a).data
reps = array_ops.array(reps, dtype=tf.int32).reshape([-1]).data
a_rank = tf.rank(a)
reps_size = tf.size(reps)
reps = tf.pad(
reps, [[tf.math.maximum(a_rank - reps_size, 0), 0]],
constant_values=1)
a_shape = tf.pad(
tf.shape(a), [[tf.math.maximum(reps_size - a_rank, 0), 0]],
constant_values=1)
a = tf.reshape(a, a_shape)
return arrays.tensor_to_ndarray(tf.tile(a, reps))
示例2: export_serving_model
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import tile [as 别名]
def export_serving_model(tf_transform_output, model, output_dir):
"""Exports a keras model for serving.
Args:
tf_transform_output: Wrapper around output of tf.Transform.
model: A keras model to export for serving.
output_dir: A directory where the model will be exported to.
"""
# The layer has to be saved to the model for keras tracking purpases.
model.tft_layer = tf_transform_output.transform_features_layer()
@tf.function
def serve_tf_examples_fn(serialized_tf_examples):
"""Serving tf.function model wrapper."""
feature_spec = RAW_DATA_FEATURE_SPEC.copy()
feature_spec.pop(LABEL_KEY)
parsed_features = tf.io.parse_example(serialized_tf_examples, feature_spec)
transformed_features = model.tft_layer(parsed_features)
outputs = model(transformed_features)
classes_names = tf.constant([['0', '1']])
classes = tf.tile(classes_names, [tf.shape(outputs)[0], 1])
return {'classes': classes, 'scores': outputs}
concrete_serving_fn = serve_tf_examples_fn.get_concrete_function(
tf.TensorSpec(shape=[None], dtype=tf.string, name='inputs'))
signatures = {'serving_default': concrete_serving_fn}
# This is required in order to make this model servable with model_server.
versioned_output_dir = os.path.join(output_dir, '1')
model.save(versioned_output_dir, save_format='tf', signatures=signatures)
示例3: _prepare_indices
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import tile [as 别名]
def _prepare_indices(idx0, idx1, idx2, idx3):
"""Prepare indices to get relevant slice from discount curve simulations."""
len0 = idx0.shape.as_list()[0]
len1 = idx1.shape.as_list()[0]
len3 = idx3.shape.as_list()[0]
idx0 = tf.repeat(idx0, len1*len3)
idx1 = tf.tile(tf.repeat(idx1, len3), [len0])
idx2 = tf.tile(tf.repeat(idx2, len3), [len0])
idx3 = tf.tile(idx3, [len0*len1])
return tf.stack([idx0, idx1, idx2, idx3], axis=-1)
示例4: circular_pad
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import tile [as 别名]
def circular_pad(input_tensor, axis, padding):
"""Pads tensor circularly.
More specifically, pad on the right with the tensor values from the left of
the tensor, as if you had concatenated the tensor on the right and vice versa.
Args:
input_tensor: typically a batch of input "images"
axis: on which to perform the circluar padding
padding: See tf.nn.conv2d arg: padding
Returns:
Tensor of shape BxHxWxC2
"""
assert 0 <= axis < len(input_tensor.shape), 'Axis out of bounds'
multiples = [1] * len(input_tensor.shape)
multiples[axis] = 3
tiled_input = tf.tile(input_tensor, multiples)
left = input_tensor.shape[axis] - padding[0]
right = 2 * input_tensor.shape[axis] + padding[1]
begin = [0] * len(input_tensor.shape)
end = list(input_tensor.shape)
begin[axis] = left
end[axis] = right
size = [a - b for a, b in zip(end, begin)]
output_tensor = tf.slice(tiled_input, begin, size)
# Do a shape assert
return output_tensor