当前位置: 首页>>代码示例>>Python>>正文


Python v2.stack方法代码示例

本文整理汇总了Python中tensorflow.compat.v2.stack方法的典型用法代码示例。如果您正苦于以下问题:Python v2.stack方法的具体用法?Python v2.stack怎么用?Python v2.stack使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.compat.v2的用法示例。


在下文中一共展示了v2.stack方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _key2seed

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import stack [as 别名]
def _key2seed(a):
  """Converts an RNG key to an RNG seed.

  Args:
    a: an RNG key, an ndarray of shape [] and dtype `np.int64`.

  Returns:
    an RNG seed, a tensor of shape [2] and dtype `tf.int32`.
  """

  def int64_to_int32s(a):
    """Converts an int64 tensor of shape [] to an int32 tensor of shape [2]."""
    a = tf.cast(a, tf.uint64)
    fst = tf.cast(a, tf.uint32)
    snd = tf.cast(
        tf.bitwise.right_shift(a, tf.constant(32, tf.uint64)), tf.uint32)
    a = [fst, snd]
    a = tf.nest.map_structure(lambda x: tf.cast(x, tf.int32), a)
    a = tf.stack(a)
    return a

  return int64_to_int32s(a.data) 
开发者ID:google,项目名称:trax,代码行数:24,代码来源:extensions.py

示例2: test_forward_unconnected_gradient

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import stack [as 别名]
def test_forward_unconnected_gradient(self):
    t = tf.range(1, 3, dtype=tf.float32)  # Shape [2]
    zeros = tf.zeros([2], dtype=t.dtype)
    func = lambda t: tf.stack([zeros, zeros, zeros], axis=0)  # Shape [3, 2]
    expected_result = [[0.0, 0.0], [0.0, 0.0], [0.0, 0.0]]
    with self.subTest("EagerExecution"):
      fwd_grad = self.evaluate(tff.math.fwd_gradient(
          func, t, unconnected_gradients=tf.UnconnectedGradients.ZERO))
      self.assertEqual(fwd_grad.shape, (3, 2))
      np.testing.assert_allclose(fwd_grad, expected_result)
    with self.subTest("GraphExecution"):
      @tf.function
      def grad_computation():
        y = func(t)
        return tff.math.fwd_gradient(
            y, t, unconnected_gradients=tf.UnconnectedGradients.ZERO)
      fwd_grad = self.evaluate(grad_computation())
      self.assertEqual(fwd_grad.shape, (3, 2))
      np.testing.assert_allclose(fwd_grad, expected_result) 
开发者ID:google,项目名称:tf-quant-finance,代码行数:21,代码来源:gradient_test.py

示例3: test_backward_unconnected_gradient

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import stack [as 别名]
def test_backward_unconnected_gradient(self):
    t = tf.range(1, 3, dtype=tf.float32)  # Shape [2]
    zeros = tf.zeros([2], dtype=t.dtype)
    expected_result = [0.0, 0.0]
    func = lambda t: tf.stack([zeros, zeros, zeros], axis=0)  # Shape [3, 2]
    with self.subTest("EagerExecution"):
      backward_grad = self.evaluate(tff.math.gradients(
          func, t, unconnected_gradients=tf.UnconnectedGradients.ZERO))
      self.assertEqual(backward_grad.shape, (2,))
      np.testing.assert_allclose(backward_grad, expected_result)
    with self.subTest("GraphExecution"):
      @tf.function
      def grad_computation():
        y = func(t)
        return tff.math.gradients(
            y, t, unconnected_gradients=tf.UnconnectedGradients.ZERO)
      backward_grad = self.evaluate(grad_computation())
      self.assertEqual(backward_grad.shape, (2,))
      np.testing.assert_allclose(backward_grad, expected_result) 
开发者ID:google,项目名称:tf-quant-finance,代码行数:21,代码来源:gradient_test.py

示例4: to_tensor

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import stack [as 别名]
def to_tensor(self):
    """Packs the dates into a single Tensor.

    The Tensor has shape `date_tensor.shape() + (3,)`, where the last dimension
    represents years, months and days, in this order.

    This can be convenient when the dates are the final result of a computation
    in the graph mode: a `tf.function` can return `date_tensor.to_tensor()`, or,
    if one uses `tf.compat.v1.Session`, they can call
    `session.run(date_tensor.to_tensor())`.

    Returns:
      A Tensor of shape `date_tensor.shape() + (3,)`.

    #### Example

    ```python
    dates = tff.datetime.dates_from_tuples([(2019, 1, 25), (2020, 3, 2)])
    dates.to_tensor()  # tf.Tensor with contents [[2019, 1, 25], [2020, 3, 2]].
    ```
    """
    return tf.stack((self.year(), self.month(), self.day()), axis=-1) 
开发者ID:google,项目名称:tf-quant-finance,代码行数:24,代码来源:date_tensor.py

示例5: _decode_and_center_crop

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import stack [as 别名]
def _decode_and_center_crop(image_bytes):
  """Crops to center of image with padding then scales image size."""
  shape = tf.image.extract_jpeg_shape(image_bytes)
  image_height = shape[0]
  image_width = shape[1]

  padded_center_crop_size = tf.cast(
      ((_IMAGE_SIZE / (_IMAGE_SIZE + _CROP_PADDING)) *
       tf.cast(tf.minimum(image_height, image_width), tf.float32)), tf.int32)

  offset_height = ((image_height - padded_center_crop_size) + 1) // 2
  offset_width = ((image_width - padded_center_crop_size) + 1) // 2
  crop_window = tf.stack([
      offset_height, offset_width, padded_center_crop_size,
      padded_center_crop_size
  ])
  image = tf.image.decode_and_crop_jpeg(image_bytes, crop_window, channels=3)
  image = tf.image.resize([image], [_IMAGE_SIZE, _IMAGE_SIZE],
                          method=tf.image.ResizeMethod.BICUBIC)[0]
  image = tf.cast(image, tf.int32)

  return image 
开发者ID:tensorflow,项目名称:datasets,代码行数:24,代码来源:imagenet2012_corrupted.py

示例6: labels_of_top_ranked_predictions_in_batch

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import stack [as 别名]
def labels_of_top_ranked_predictions_in_batch(labels, predictions):
  """Applying tf.metrics.mean to this gives precision at 1.

  Args:
    labels: minibatch of dense 0/1 labels, shape [batch_size rows, num_classes]
    predictions: minibatch of predictions of the same shape

  Returns:
    one-dimension tensor top_labels, where top_labels[i]=1.0 iff the
    top-scoring prediction for batch element i has label 1.0
  """
  indices_of_top_preds = tf.cast(tf.argmax(input=predictions, axis=1), tf.int32)
  batch_size = tf.reduce_sum(input_tensor=tf.ones_like(indices_of_top_preds))
  row_indices = tf.range(batch_size)
  thresholded_labels = tf.where(labels > 0.0, tf.ones_like(labels),
                                tf.zeros_like(labels))
  label_indices_to_gather = tf.transpose(
      a=tf.stack([row_indices, indices_of_top_preds]))
  return tf.gather_nd(thresholded_labels, label_indices_to_gather) 
开发者ID:google-research,项目名称:language,代码行数:21,代码来源:util.py

示例7: stack_nested_tensors

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import stack [as 别名]
def stack_nested_tensors(list_of_nests):
  """Stack a list of nested tensors.

  Args:
    list_of_nests: A list of nested tensors (or numpy arrays) of the same
      shape/structure.

  Returns:
    A nested array containing batched items, where each batched item is obtained
    by stacking corresponding items from the list of nested_arrays.
  """


  def stack_tensor(*tensors):
    result = [tf.convert_to_tensor(t) for t in tensors]
    return tf.stack(result)

  return tf.nest.map_structure(stack_tensor, *list_of_nests) 
开发者ID:google-research,项目名称:valan,代码行数:20,代码来源:utils.py

示例8: process_multidoc_dataset

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import stack [as 别名]
def process_multidoc_dataset(dataset, batch_size, params):
  """Parses, organizes and batches multi-doc dataset."""
  name_to_features, feature_list = multidoc_parse_spec(params)
  decode_fn = lambda record: decode_record(record, name_to_features)
  dataset = dataset.map(
      decode_fn, num_parallel_calls=tf.data.experimental.AUTOTUNE)

  def _select_data_from_record(record):
    """Filter out features to use for pretraining."""
    features = {"target_ids": record["input_ids_a"]}
    for feature in feature_list:
      tensors = [record["%s_%s" % (feature, i)] for i in params.passage_list]
      features[feature] = tf.stack(tensors)
    return features

  dataset = dataset.map(
      _select_data_from_record,
      num_parallel_calls=tf.data.experimental.AUTOTUNE)
  dataset = dataset.batch(batch_size, drop_remainder=True)
  return dataset 
开发者ID:tensorflow,项目名称:models,代码行数:22,代码来源:input_pipeline.py

示例9: convert_sharded_tensor_to_eager_tensor

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import stack [as 别名]
def convert_sharded_tensor_to_eager_tensor(value, *args, **kwargs):
  del args, kwargs
  # TODO(nareshmodi): Consider a collective op to gather the tensors from the
  # various devices for performance reasons.
  return tf.stack(value.tensors) 
开发者ID:google,项目名称:trax,代码行数:7,代码来源:extensions.py

示例10: stack

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import stack [as 别名]
def stack(arrays, axis=0):
  arrays = _promote_dtype(*arrays)  # pylint: disable=protected-access
  unwrapped_arrays = [
      a.data if isinstance(a, arrays_lib.ndarray) else a for a in arrays
  ]
  return asarray(tf.stack(unwrapped_arrays, axis)) 
开发者ID:google,项目名称:trax,代码行数:8,代码来源:array_ops.py

示例11: test_forward_gradient

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import stack [as 别名]
def test_forward_gradient(self):
    t = tf.range(1, 3, dtype=tf.float32)  # Shape [2]
    func = lambda t: tf.stack([t, t ** 2, t ** 3], axis=0)  # Shape [3, 2]
    with self.subTest("EagerExecution"):
      fwd_grad = self.evaluate(tff.math.fwd_gradient(func, t))
      self.assertEqual(fwd_grad.shape, (3, 2))
      np.testing.assert_allclose(fwd_grad, [[1., 1.], [2., 4.], [3., 12.]])
    with self.subTest("GraphExecution"):
      @tf.function
      def grad_computation():
        y = func(t)
        return tff.math.fwd_gradient(y, t)
      fwd_grad = self.evaluate(grad_computation())
      self.assertEqual(fwd_grad.shape, (3, 2))
      np.testing.assert_allclose(fwd_grad, [[1., 1.], [2., 4.], [3., 12.]]) 
开发者ID:google,项目名称:tf-quant-finance,代码行数:17,代码来源:gradient_test.py

示例12: test_backward_gradient

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import stack [as 别名]
def test_backward_gradient(self):
    t = tf.range(1, 3, dtype=tf.float32)  # Shape [2]
    func = lambda t: tf.stack([t, t ** 2, t ** 3], axis=0)  # Shape [3, 2]
    with self.subTest("EagerExecution"):
      backward_grad = self.evaluate(tff.math.gradients(func, t))
      self.assertEqual(backward_grad.shape, (2,))
      np.testing.assert_allclose(backward_grad, [6., 17.])
    with self.subTest("GraphExecution"):
      @tf.function
      def grad_computation():
        y = func(t)
        return tff.math.gradients(y, t)
      backward_grad = self.evaluate(grad_computation())
      self.assertEqual(backward_grad.shape, (2,))
      np.testing.assert_allclose(backward_grad, [6., 17.]) 
开发者ID:google,项目名称:tf-quant-finance,代码行数:17,代码来源:gradient_test.py

示例13: test_diffs_differentiable

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import stack [as 别名]
def test_diffs_differentiable(self):
    """Tests that the diffs op is differentiable."""
    x = tf.constant(2.0)
    xv = tf.stack([x, x * x, x * x * x], axis=0)

    # Produces [x, x^2 - x, x^3 - x^2]
    dxv = self.evaluate(math.diff(xv))
    np.testing.assert_array_equal(dxv, [2., 2., 4.])

    grad = self.evaluate(tf.gradients(math.diff(xv), x)[0])
    # Note that TF gradients adds up the components of the jacobian.
    # The sum of [1, 2x-1, 3x^2-2x] at x = 2 is 12.
    self.assertEqual(grad, 12.0) 
开发者ID:google,项目名称:tf-quant-finance,代码行数:15,代码来源:diff_ops_test.py

示例14: test_data_fitting

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import stack [as 别名]
def test_data_fitting(self):
    """Tests MLE estimation for a simple geometric GLM."""
    n, dim = 100, 3
    dtype = tf.float64
    np.random.seed(234095)
    x = np.random.choice([0, 1], size=[dim, n])
    s = 0.01 * np.sum(x, 0)
    p = 1. / (1 + np.exp(-s))
    y = np.random.geometric(p)
    x_data = tf.convert_to_tensor(value=x, dtype=dtype)
    y_data = tf.expand_dims(tf.convert_to_tensor(value=y, dtype=dtype), -1)

    def neg_log_likelihood(state):
      state_ext = tf.expand_dims(state, 0)
      linear_part = tf.matmul(state_ext, x_data)
      linear_part_ex = tf.stack([tf.zeros_like(linear_part), linear_part],
                                axis=0)
      term1 = tf.squeeze(
          tf.matmul(tf.reduce_logsumexp(linear_part_ex, axis=0), y_data), -1)
      term2 = (0.5 * tf.reduce_sum(state_ext * state_ext, axis=-1) -
               tf.reduce_sum(linear_part, axis=-1))
      return tf.squeeze(term1 + term2)

    self._check_algorithm(
        func=neg_log_likelihood,
        start_point=np.ones(shape=[dim]),
        expected_argmin=[-0.020460034354, 0.171708568111, 0.021200423717]) 
开发者ID:google,项目名称:tf-quant-finance,代码行数:29,代码来源:conjugate_gradient_test.py

示例15: test_spline_broadcast_batch

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import stack [as 别名]
def test_spline_broadcast_batch(self, optimize_for_tpu):
    """Tests batch shape of spline and interpolation are broadcasted."""
    x_data1 = np.linspace(-5.0, 5.0, num=11)
    x_data2 = np.linspace(0.0, 10.0, num=11)
    x_data = np.array([x_data1, x_data2])
    y_data = 1.0 / (2.0 + x_data**2)
    x_data = tf.stack(x_data, axis=0)
    dtype = np.float64
    x_value_1 = tf.constant([[[-1.2, 0.0, 0.3]]], dtype=dtype)
    x_value_2 = tf.constant([-1.2, 0.0, 0.3], dtype=dtype)
    spline = tff.math.interpolation.cubic.build_spline(x_data,
                                                       y_data)

    result_1 = tff.math.interpolation.cubic.interpolate(
        x_value_1, spline,
        optimize_for_tpu=optimize_for_tpu, dtype=dtype)
    result_2 = tff.math.interpolation.cubic.interpolate(
        x_value_2, spline,
        optimize_for_tpu=optimize_for_tpu, dtype=dtype)
    expected_1 = np.array([[[0.29131469, 0.5, 0.4779499],
                            [0.5, 0.5, 0.45159077]]], dtype=dtype)
    expected_2 = np.array([[0.29131469, 0.5, 0.4779499],
                           [0.5, 0.5, 0.45159077]], dtype=dtype)
    with self.subTest("BroadcastData"):
      self.assertAllClose(result_1, expected_1)
    with self.subTest("BroadcastValues"):
      self.assertAllClose(result_2, expected_2) 
开发者ID:google,项目名称:tf-quant-finance,代码行数:29,代码来源:cubic_interpolation_test.py


注:本文中的tensorflow.compat.v2.stack方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。