本文整理汇总了Python中tensorflow.compat.v2.squeeze方法的典型用法代码示例。如果您正苦于以下问题:Python v2.squeeze方法的具体用法?Python v2.squeeze怎么用?Python v2.squeeze使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.compat.v2
的用法示例。
在下文中一共展示了v2.squeeze方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: squeeze
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import squeeze [as 别名]
def squeeze(a, axis=None):
"""Removes single-element axes from the array.
Args:
a: array_like. Could be an ndarray, a Tensor or any object that can
be converted to a Tensor using `tf.convert_to_tensor`.
axis: scalar or list/tuple of ints.
TODO(srbs): tf.squeeze throws error when axis is a Tensor eager execution
is enabled. So we cannot allow axis to be array_like here. Fix.
Returns:
An ndarray.
"""
a = asarray(a)
return utils.tensor_to_ndarray(tf.squeeze(a, axis))
示例2: testHomogeneous
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import squeeze [as 别名]
def testHomogeneous(self, scheme, accuracy_order):
# Tests solving du/dt = At for a time step.
# Compares with exact solution u(t) = exp(At) u(0).
# Time step should be small enough to "resolve" different orders of accuracy
time_step = 0.0001
u = tf.constant([1, 2, -1, -2], dtype=tf.float64)
matrix = tf.constant(
[[1, -1, 0, 0], [3, 1, 2, 0], [0, -2, 1, 4], [0, 0, 3, 1]],
dtype=tf.float64)
tridiag_form = self._convert_to_tridiagonal_format(matrix)
actual = self.evaluate(
scheme(u, 0, time_step, lambda t: (tridiag_form, None)))
expected = self.evaluate(
tf.squeeze(
tf.matmul(tf.linalg.expm(matrix * time_step), tf.expand_dims(u,
1))))
error_tolerance = 30 * time_step**(accuracy_order + 1)
self.assertLess(np.max(np.abs(actual - expected)), error_tolerance)
示例3: testHomogeneousBackwards
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import squeeze [as 别名]
def testHomogeneousBackwards(self, scheme, accuracy_order):
# Tests solving du/dt = At for a backward time step.
# Compares with exact solution u(0) = exp(-At) u(t).
time_step = 0.0001
u = tf.constant([1, 2, -1, -2], dtype=tf.float64)
matrix = tf.constant(
[[1, -1, 0, 0], [3, 1, 2, 0], [0, -2, 1, 4], [0, 0, 3, 1]],
dtype=tf.float64)
tridiag_form = self._convert_to_tridiagonal_format(matrix)
actual = self.evaluate(
scheme(u, time_step, 0, lambda t: (tridiag_form, None)))
expected = self.evaluate(
tf.squeeze(
tf.matmul(
tf.linalg.expm(-matrix * time_step), tf.expand_dims(u, 1))))
error_tolerance = 30 * time_step**(accuracy_order + 1)
self.assertLess(np.max(np.abs(actual - expected)), error_tolerance)
示例4: testInhomogeneous
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import squeeze [as 别名]
def testInhomogeneous(self, scheme, accuracy_order):
# Tests solving du/dt = At + b for a time step.
# Compares with exact solution u(t) = exp(At) u(0) + (exp(At) - 1) A^(-1) b.
time_step = 0.0001
u = tf.constant([1, 2, -1, -2], dtype=tf.float64)
matrix = tf.constant(
[[1, -1, 0, 0], [3, 1, 2, 0], [0, -2, 1, 4], [0, 0, 3, 1]],
dtype=tf.float64)
b = tf.constant([1, -1, -2, 2], dtype=tf.float64)
tridiag_form = self._convert_to_tridiagonal_format(matrix)
actual = self.evaluate(scheme(u, 0, time_step, lambda t: (tridiag_form, b)))
exponent = tf.linalg.expm(matrix * time_step)
eye = tf.eye(4, 4, dtype=tf.float64)
u = tf.expand_dims(u, 1)
b = tf.expand_dims(b, 1)
expected = (
tf.matmul(exponent, u) +
tf.matmul(exponent - eye, tf.matmul(tf.linalg.inv(matrix), b)))
expected = self.evaluate(tf.squeeze(expected))
error_tolerance = 30 * time_step**(accuracy_order + 1)
self.assertLess(np.max(np.abs(actual - expected)), error_tolerance)
示例5: testInhomogeneousBackwards
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import squeeze [as 别名]
def testInhomogeneousBackwards(self, scheme, accuracy_order):
# Tests solving du/dt = At + b for a backward time step.
# Compares with exact solution u(0) = exp(-At) u(t)
# + (exp(-At) - 1) A^(-1) b.
time_step = 0.0001
u = tf.constant([1, 2, -1, -2], dtype=tf.float64)
matrix = tf.constant(
[[1, -1, 0, 0], [3, 1, 2, 0], [0, -2, 1, 4], [0, 0, 3, 1]],
dtype=tf.float64)
b = tf.constant([1, -1, -2, 2], dtype=tf.float64)
tridiag_form = self._convert_to_tridiagonal_format(matrix)
actual = self.evaluate(scheme(u, time_step, 0, lambda t: (tridiag_form, b)))
exponent = tf.linalg.expm(-matrix * time_step)
eye = tf.eye(4, 4, dtype=tf.float64)
u = tf.expand_dims(u, 1)
b = tf.expand_dims(b, 1)
expected = (
tf.matmul(exponent, u) +
tf.matmul(exponent - eye, tf.matmul(tf.linalg.inv(matrix), b)))
expected = self.evaluate(tf.squeeze(expected))
error_tolerance = 30 * time_step**(accuracy_order + 1)
self.assertLess(np.max(np.abs(actual - expected)), error_tolerance)
示例6: _apply_tridiag_matrix_explicitly
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import squeeze [as 别名]
def _apply_tridiag_matrix_explicitly(values, superdiag, diag, subdiag,
dim, n_dims):
"""Applies tridiagonal matrix explicitly."""
perm = _get_permutation(values, n_dims, dim)
# Make the given dimension the last one in the tensors, treat all the
# other spatial dimensions as batch dimensions.
if perm is not None:
values = tf.transpose(values, perm)
superdiag, diag, subdiag = (
tf.transpose(c, perm) for c in (superdiag, diag, subdiag))
values = tf.squeeze(
tf.linalg.tridiagonal_matmul((superdiag, diag, subdiag),
tf.expand_dims(values, -1),
diagonals_format='sequence'), -1)
# Transpose back to how it was.
if perm is not None:
values = tf.transpose(values, perm)
return values
示例7: test_univariate_sample_mean_and_variance
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import squeeze [as 别名]
def test_univariate_sample_mean_and_variance(self, dtype):
"""Tests the mean and vol of the univariate GBM sampled paths."""
process = tff.models.GeometricBrownianMotion(0.05, 0.5, dtype=dtype)
samples = process.sample_paths(
times=[0.1, 0.5, 1.0], initial_state=2.0,
random_type=tff.math.random.RandomType.SOBOL, num_samples=10000)
log_s = tf.math.log(samples)
mean = tf.reduce_mean(log_s, axis=0, keepdims=True)
var = tf.reduce_mean((log_s - mean)**2, axis=0)
expected_mean = ((process._mu - process._sigma**2 / 2)
* np.array([0.1, 0.5, 1.0]) + np.log(2.))
expected_var = process._sigma**2 * np.array([0.1, 0.5, 1.0])
with self.subTest("Drift"):
self.assertAllClose(tf.squeeze(mean), expected_mean, atol=1e-3, rtol=1e-3)
with self.subTest("Variance"):
self.assertAllClose(tf.squeeze(var), expected_var, atol=1e-3, rtol=1e-3)
示例8: _get_parameters
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import squeeze [as 别名]
def _get_parameters(times, *params):
"""Gets parameter values at at specified `times`."""
res = []
for param in params:
if isinstance(param, piecewise.PiecewiseConstantFunc):
jump_locations = param.jump_locations()
if len(jump_locations.shape) > 1:
# If `jump_locations` has batch dimension, transpose the result
# Shape [num_times, dim]
res.append(tf.transpose(param(times)))
else:
# Shape [num_times, dim]
res.append(param(times))
elif callable(param):
# Used only in drift and volatility computation.
# Here `times` is of shape [1]
t = tf.squeeze(times)
# The result has to have shape [1] + param.shape
res.append(tf.expand_dims(param(t), 0))
else:
res.append(param + tf.zeros(times.shape + param.shape, dtype=times.dtype))
return res
示例9: sparse_top_k_categorical_accuracy
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import squeeze [as 别名]
def sparse_top_k_categorical_accuracy(y_true, y_pred, k=5):
"""TPU version of sparse_top_k_categorical_accuracy."""
y_pred_rank = tf.convert_to_tensor(y_pred).get_shape().ndims
y_true_rank = tf.convert_to_tensor(y_true).get_shape().ndims
# If the shape of y_true is (num_samples, 1), squeeze to (num_samples,)
if ((y_true_rank is not None) and
(y_pred_rank is not None) and
(len(tf.keras.backend.int_shape(y_true)) ==
len(tf.keras.backend.int_shape(y_pred)))):
y_true = tf.squeeze(y_true, [-1])
y_true = tf.cast(y_true, 'int32')
return tf.nn.in_top_k(y_true, y_pred, k)
示例10: test_data_fitting
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import squeeze [as 别名]
def test_data_fitting(self):
"""Tests MLE estimation for a simple geometric GLM."""
n, dim = 100, 3
dtype = tf.float64
np.random.seed(234095)
x = np.random.choice([0, 1], size=[dim, n])
s = 0.01 * np.sum(x, 0)
p = 1. / (1 + np.exp(-s))
y = np.random.geometric(p)
x_data = tf.convert_to_tensor(value=x, dtype=dtype)
y_data = tf.expand_dims(tf.convert_to_tensor(value=y, dtype=dtype), -1)
def neg_log_likelihood(state):
state_ext = tf.expand_dims(state, 0)
linear_part = tf.matmul(state_ext, x_data)
linear_part_ex = tf.stack([tf.zeros_like(linear_part), linear_part],
axis=0)
term1 = tf.squeeze(
tf.matmul(tf.reduce_logsumexp(linear_part_ex, axis=0), y_data), -1)
term2 = (0.5 * tf.reduce_sum(state_ext * state_ext, axis=-1) -
tf.reduce_sum(linear_part, axis=-1))
return tf.squeeze(term1 + term2)
self._check_algorithm(
func=neg_log_likelihood,
start_point=np.ones(shape=[dim]),
expected_argmin=[-0.020460034354, 0.171708568111, 0.021200423717])
示例11: _adjust_convexity
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import squeeze [as 别名]
def _adjust_convexity(self, valuation_date, market, model, pricing_context,
cms_rates, discount_factors):
"""Computes the convexity adjusted cms rate."""
if model is None:
return cms_rates
elif model in (
rc.InterestRateModelType.LOGNORMAL_SMILE_CONSISTENT_REPLICATION,
rc.InterestRateModelType.NORMAL_SMILE_CONSISTENT_REPLICATION):
return self._convexity_smile_replication(
valuation_date, market, model, cms_rates, pricing_context)
else:
level = self._swap.annuity(valuation_date, market, None)
expiry_time = dates.daycount_actual_365_fixed(
start_date=valuation_date,
end_date=self._coupon_start_dates,
dtype=self._dtype)
with tf.GradientTape() as g:
g.watch(cms_rates)
fx = self._fs(cms_rates)
dfx = tf.squeeze(g.gradient(fx, cms_rates))
swap_vol = tf.convert_to_tensor(pricing_context, dtype=self._dtype)
if model == rc.InterestRateModelType.LOGNORMAL_RATE:
cms_rates = cms_rates + dfx * level * (cms_rates**2) * (
tf.math.exp(swap_vol**2 * expiry_time) - 1.0) / discount_factors
else:
cms_rates = cms_rates + dfx * level * (
swap_vol**2 * expiry_time) / discount_factors
return cms_rates
示例12: _f_atm_first_derivative
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import squeeze [as 别名]
def _f_atm_first_derivative(self, s, cms_rates):
"""Computes first order derivative of _f_atm."""
with tf.GradientTape() as g:
g.watch(s)
fx = self._f_atm(s, cms_rates)
dfx = tf.squeeze(g.gradient(fx, s))
return dfx
示例13: _f_atm_second_derivative
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import squeeze [as 别名]
def _f_atm_second_derivative(self, s, cms_rates):
"""Computes second order derivative of _f_atm."""
with tf.GradientTape() as g:
g.watch(s)
with tf.GradientTape() as gg:
gg.watch(s)
fx = self._f_atm(s, cms_rates)
dfx = tf.squeeze(gg.gradient(fx, s))
d2fx = tf.squeeze(g.gradient(dfx, s))
return d2fx
示例14: _put_valuer
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import squeeze [as 别名]
def _put_valuer(sample_paths, time_index, strike_price, dtype=None, name=None):
"""Produces a callable from samples to payoff of a simple basket put option.
Args:
sample_paths: A `Tensor` of either `flaot32` or `float64` dtype and of
shape `[num_samples, num_times, dim]`.
time_index: An integer scalar `Tensor` that corresponds to the time
coordinate at which the basis function is computed.
strike_price: A `Tensor` of the same `dtype` as `sample_paths` and shape
`[num_samples, num_strikes]`.
dtype: Optional `dtype`. Either `tf.float32` or `tf.float64`. The `dtype`
If supplied, represents the `dtype` for the 'strike_price' as well as
for the input argument of the output payoff callable.
Default value: `None`, which means that the `dtype` inferred by TensorFlow
is used.
name: Python `str` name prefixed to Ops created by the callable created
by this function.
Default value: `None` which is mapped to the default name 'put_valuer'
Returns:
A callable from `Tensor` of shape `[num_samples, num_exercise_times, dim]`
and a scalar `Tensor` representing current time to a `Tensor` of shape
`[num_samples, num_strikes]`.
"""
name = name or "put_valuer"
with tf.name_scope(name):
strike_price = tf.convert_to_tensor(strike_price, dtype=dtype,
name="strike_price")
sample_paths = tf.convert_to_tensor(sample_paths, dtype=dtype,
name="sample_paths")
num_samples, _, dim = sample_paths.shape.as_list()
slice_sample_paths = tf.slice(sample_paths, [0, time_index, 0],
[num_samples, 1, dim])
slice_sample_paths = tf.squeeze(slice_sample_paths, 1)
average = tf.math.reduce_mean(slice_sample_paths, axis=-1, keepdims=True)
return tf.nn.relu(strike_price - average)
示例15: _expected_exercise_fn
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import squeeze [as 别名]
def _expected_exercise_fn(design, continuation_value, exercise_value):
"""Returns the expected continuation value for each path.
Args:
design: A real `Tensor` of shape `[basis_size, num_samples]`.
continuation_value: A `Tensor` of shape `[num_samples, payoff_dim]` and of
the same dtype as `design`. The optimal value of the option conditional on
not exercising now or earlier, taking future information into account.
exercise_value: A `Tensor` of the same shape and dtype as
`continuation_value`. Value of the option if exercised immideately at
the current time
Returns:
A `Tensor` of the same shape and dtype as `continuation_value` whose
`(n, v)`-th entry represents the expected continuation value of sample path
`n` under the `v`-th payoff scheme.
"""
batch_design = tf.broadcast_to(
design[..., None], design.shape + [continuation_value.shape[-1]])
mask = tf.cast(exercise_value > 0, design.dtype)
# Zero out contributions from samples we'd never exercise at this point (i.e.,
# these extra observations do not change the regression coefficients).
masked = tf.transpose(batch_design * mask, perm=(2, 1, 0))
# For design matrix X and response y, the coefficients beta of the best linear
# unbiased estimate are contained in the equation X'X beta = X'y. Here `lhs`
# is X'X and `rhs` is X'y, or rather a tensor of such left hand and right hand
# sides, one for each payoff dimension.
lhs = tf.matmul(masked, masked, transpose_a=True)
# Use pseudo inverse for the regression matrix to ensure stability of the
# algorithm.
lhs_pinv = tf.linalg.pinv(lhs)
rhs = tf.matmul(
masked,
tf.expand_dims(tf.transpose(continuation_value), axis=-1),
transpose_a=True)
beta = tf.matmul(lhs_pinv, rhs)
continuation = tf.matmul(tf.transpose(batch_design, perm=(2, 1, 0)), beta)
return tf.maximum(tf.transpose(tf.squeeze(continuation, -1)), 0.0)