当前位置: 首页>>代码示例>>Python>>正文


Python v2.reshape方法代码示例

本文整理汇总了Python中tensorflow.compat.v2.reshape方法的典型用法代码示例。如果您正苦于以下问题:Python v2.reshape方法的具体用法?Python v2.reshape怎么用?Python v2.reshape使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.compat.v2的用法示例。


在下文中一共展示了v2.reshape方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: diagflat

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import reshape [as 别名]
def diagflat(v, k=0):
  """Returns a 2-d array with flattened `v` as diagonal.

  Args:
    v: array_like of any rank. Gets flattened when setting as diagonal. Could be
      an ndarray, a Tensor or any object that can be converted to a Tensor using
      `tf.convert_to_tensor`.
    k: Position of the diagonal. Defaults to 0, the main diagonal. Positive
      values refer to diagonals shifted right, negative values refer to
      diagonals shifted left.

  Returns:
    2-d ndarray.
  """
  v = asarray(v)
  return diag(tf.reshape(v.data, [-1]), k) 
开发者ID:google,项目名称:trax,代码行数:18,代码来源:array_ops.py

示例2: reshape

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import reshape [as 别名]
def reshape(a, newshape, order='C'):
  """order argument can only b 'C' or 'F'."""
  if order not in {'C', 'F'}:
    raise ValueError('Unsupported order argument {}'.format(order))

  a = asarray(a)
  if isinstance(newshape, arrays_lib.ndarray):
    newshape = newshape.data
  if isinstance(newshape, int):
    newshape = [newshape]

  if order == 'F':
    r = tf.transpose(tf.reshape(tf.transpose(a.data), newshape[::-1]))
  else:
    r = tf.reshape(a.data, newshape)

  return utils.tensor_to_ndarray(r) 
开发者ID:google,项目名称:trax,代码行数:19,代码来源:array_ops.py

示例3: take

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import reshape [as 别名]
def take(a, indices, axis=None, out=None, mode='clip'):
  """out argument is not supported, and default mode is clip."""
  if out is not None:
    raise ValueError('out argument is not supported in take.')

  if mode not in {'raise', 'clip', 'wrap'}:
    raise ValueError("Invalid mode '{}' for take".format(mode))

  a = asarray(a).data
  indices = asarray(indices).data

  if axis is None:
    a = tf.reshape(a, [-1])
    axis = 0

  axis_size = tf.shape(a, indices.dtype)[axis]
  if mode == 'clip':
    indices = tf.clip_by_value(indices, 0, axis_size-1)
  elif mode == 'wrap':
    indices = tf.math.floormod(indices, axis_size)
  else:
    raise ValueError("The 'raise' mode to take is not supported.")

  return utils.tensor_to_ndarray(tf.gather(a, indices, axis=axis)) 
开发者ID:google,项目名称:trax,代码行数:26,代码来源:array_ops.py

示例4: argsort

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import reshape [as 别名]
def argsort(a, axis=-1, kind='quicksort', order=None):  # pylint: disable=missing-docstring
  # TODO(nareshmodi): make string tensors also work.
  if kind not in ('quicksort', 'stable'):
    raise ValueError("Only 'quicksort' and 'stable' arguments are supported.")
  if order is not None:
    raise ValueError("'order' argument to sort is not supported.")
  stable = (kind == 'stable')

  a = array_ops.array(a).data

  def _argsort(a, axis, stable):
    if axis is None:
      a = tf.reshape(a, [-1])
      axis = 0

    return tf.argsort(a, axis, stable=stable)

  tf_ans = tf.cond(
      tf.rank(a) == 0, lambda: tf.constant([0]),
      lambda: _argsort(a, axis, stable))

  return array_ops.array(tf_ans, dtype=np.intp) 
开发者ID:google,项目名称:trax,代码行数:24,代码来源:math_ops.py

示例5: hessian_as_matrix

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import reshape [as 别名]
def hessian_as_matrix(function: Callable[[Parameters], tf.Tensor],
                      parameters: Parameters) -> tf.Tensor:
  """Computes the Hessian of a given function.

  Same as `hessian`, although return a matrix of size [w_dim, w_dim], where
  `w_dim` is the number of parameters, which makes it easier to work with.

  Args:
    function: A function for which we want to compute the Hessian.
    parameters: Parameters with respect to the Hessian should be computed.

  Returns:
    A tensor of size [w_dim, w_dim] representing the Hessian.
  """
  hessian_as_tensor_list = hessian(function, parameters)
  hessian_as_tensor_list = [
      tf.reshape(e, [e.shape[0], -1]) for e in hessian_as_tensor_list]
  return tf.concat(hessian_as_tensor_list, axis=1) 
开发者ID:google,项目名称:spectral-density,代码行数:20,代码来源:test_util.py

示例6: test_default_construction_2d

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import reshape [as 别名]
def test_default_construction_2d(self):
    """Tests the default parameters for 2 dimensional Brownian Motion."""
    process = BrownianMotion(dim=2)
    self.assertEqual(process.dim(), 2)
    drift_fn = process.total_drift_fn()
    # Drifts should be zero.
    t0 = np.array([0.2, 0.7, 0.9])
    delta_t = np.array([0.1, 0.8, 0.3])
    t1 = t0 + delta_t
    drifts = self.evaluate(drift_fn(t0, t1))
    self.assertEqual(drifts.shape, (3, 2))
    self.assertArrayNear(drifts.reshape([-1]), np.zeros([3 * 2]), 1e-10)
    variances = self.evaluate(process.total_covariance_fn()(t0, t1))
    self.assertEqual(variances.shape, (3, 2, 2))
    expected_variances = np.eye(2) * delta_t.reshape([-1, 1, 1])
    print(variances, expected_variances)

    self.assertArrayNear(
        variances.reshape([-1]), expected_variances.reshape([-1]), 1e-10) 
开发者ID:google,项目名称:tf-quant-finance,代码行数:21,代码来源:brownian_motion_test.py

示例7: test_time_dependent_construction

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import reshape [as 别名]
def test_time_dependent_construction(self):
    """Tests with time dependent drift and variance."""

    def vol_fn(t):
      return tf.expand_dims(0.2 - 0.1 * tf.exp(-t), axis=-1)

    def variance_fn(t0, t1):
      # The instantaneous volatility is 0.2 - 0.1 e^(-t).
      tot_var = (t1 - t0) * 0.04 - (tf.exp(-2 * t1) - tf.exp(-2 * t0)) * 0.005
      tot_var += 0.04 * (tf.exp(-t1) - tf.exp(-t0))
      return tf.reshape(tot_var, [-1, 1, 1])

    process = BrownianMotion(
        dim=1, drift=0.1, volatility=vol_fn, total_covariance_fn=variance_fn)
    t0 = np.array([0.2, 0.7, 0.9])
    delta_t = np.array([0.1, 0.8, 0.3])
    t1 = t0 + delta_t
    drifts = self.evaluate(process.total_drift_fn()(t0, t1))
    self.assertArrayNear(drifts, 0.1 * delta_t, 1e-10)
    variances = self.evaluate(process.total_covariance_fn()(t0, t1))
    self.assertArrayNear(
        variances.reshape([-1]), [0.00149104, 0.02204584, 0.00815789], 1e-8) 
开发者ID:google,项目名称:tf-quant-finance,代码行数:24,代码来源:brownian_motion_test.py

示例8: outer_multiply

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import reshape [as 别名]
def outer_multiply(x, y):
  """Performs an outer multiplication of two tensors.

  Given two `Tensor`s, `S` and `T` of shape `s` and `t` respectively, the outer
  product `P` is a `Tensor` of shape `s + t` whose components are given by:

  ```none
  P_{i1,...ik, j1, ... , jm} = S_{i1...ik} T_{j1, ... jm}
  ```

  Args:
    x: A `Tensor` of any shape and numeric dtype.
    y: A `Tensor` of any shape and the same dtype as `x`.

  Returns:
    outer_product: A `Tensor` of shape Shape[x] + Shape[y] and the same dtype
      as `x`.
  """
  x_shape = tf.shape(x)
  padded_shape = tf.concat(
      [x_shape, tf.ones(tf.rank(y), dtype=x_shape.dtype)], axis=0)
  return tf.reshape(x, padded_shape) * y 
开发者ID:google,项目名称:tf-quant-finance,代码行数:24,代码来源:brownian_motion_utils.py

示例9: _reshape_inner_dims

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import reshape [as 别名]
def _reshape_inner_dims(
    tensor: tf.Tensor,
    shape: tf.TensorShape,
    new_shape: tf.TensorShape) -> tf.Tensor:
  """Reshapes tensor to: shape(tensor)[:-len(shape)] + new_shape."""
  tensor_shape = tf.shape(tensor)
  ndims = shape.rank
  tensor.shape[-ndims:].assert_is_compatible_with(shape)
  new_shape_inner_tensor = tf.cast(
      [-1 if d is None else d for d in new_shape.as_list()], tf.int64)
  new_shape_outer_tensor = tf.cast(
      tensor_shape[:-ndims], tf.int64)
  full_new_shape = tf.concat(
      (new_shape_outer_tensor, new_shape_inner_tensor), axis=0)
  new_tensor = tf.reshape(tensor, full_new_shape)
  new_tensor.set_shape(tensor.shape[:-ndims] + new_shape)
  return new_tensor 
开发者ID:tensorflow,项目名称:agents,代码行数:19,代码来源:inner_reshape.py

示例10: _prob

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import reshape [as 别名]
def _prob(self, y):
    """Called by the base class to compute likelihoods."""
    # Convert to (channels, 1, batch) format by collapsing dimensions and then
    # commuting channels to front.
    y = tf.broadcast_to(
        y, tf.broadcast_dynamic_shape(tf.shape(y), self.batch_shape_tensor()))
    shape = tf.shape(y)
    y = tf.reshape(y, (-1, 1, self.batch_shape.num_elements()))
    y = tf.transpose(y, (2, 1, 0))

    # Evaluate densities.
    # We can use the special rule below to only compute differences in the left
    # tail of the sigmoid. This increases numerical stability: sigmoid(x) is 1
    # for large x, 0 for small x. Subtracting two numbers close to 0 can be done
    # with much higher precision than subtracting two numbers close to 1.
    lower = self._logits_cumulative(y - .5)
    upper = self._logits_cumulative(y + .5)
    # Flip signs if we can move more towards the left tail of the sigmoid.
    sign = tf.stop_gradient(-tf.math.sign(lower + upper))
    p = abs(tf.sigmoid(sign * upper) - tf.sigmoid(sign * lower))

    # Convert back to (broadcasted) input tensor shape.
    p = tf.transpose(p, (2, 1, 0))
    p = tf.reshape(p, shape)
    return p 
开发者ID:tensorflow,项目名称:compression,代码行数:27,代码来源:deep_factorized.py

示例11: distance_metric

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import reshape [as 别名]
def distance_metric(preds, targets):
  """Calculate distances between model predictions and targets within a batch."""
  batch_size = preds.shape[0]
  preds = tf.reshape(
      preds, [batch_size, DOWNSCALED_PANO_HEIGHT, DOWNSCALED_PANO_WIDTH])
  targets = tf.reshape(
      targets, [batch_size, DOWNSCALED_PANO_HEIGHT, DOWNSCALED_PANO_WIDTH])
  distances = []
  for pred, target in zip(preds, targets):
    pred_coord = np.unravel_index(np.argmax(pred), pred.shape)
    target_coord = np.unravel_index(np.argmax(target), target.shape)
    dist = np.sqrt((target_coord[0] - pred_coord[0])**2 +
                   (target_coord[1] - pred_coord[1])**2)
    dist = dist * RESOLUTION_MULTIPLIER
    distances.append(dist)
  return distances 
开发者ID:google-research,项目名称:valan,代码行数:18,代码来源:train_eager.py

示例12: postprocessing

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import reshape [as 别名]
def postprocessing(self, env_output):
    observation = env_output.observation
    # [time_step, 1]
    is_start = observation[constants.IS_START].numpy()
    cnt = 0
    mask = []
    for i in range(is_start.shape[0]):
      cnt += is_start[i]
      if cnt == 1:
        mask.append(True)
      else:
        mask.append(False)
    mask = tf.reshape(tf.convert_to_tensor(mask), is_start.shape)
    observation[constants.DISC_MASK] = mask
    env_output = env_output._replace(observation=observation)
    return env_output 
开发者ID:google-research,项目名称:valan,代码行数:18,代码来源:discriminator_problem.py

示例13: _generate_examples

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import reshape [as 别名]
def _generate_examples(self, path):
        """Yields examples."""

        clean_key = "clean"
        adversarial_key = "adversarial"

        def _parse(serialized_example):
            ds_features = {
                "height": tf.io.FixedLenFeature([], tf.int64),
                "width": tf.io.FixedLenFeature([], tf.int64),
                "label": tf.io.FixedLenFeature([], tf.int64),
                "adv-image": tf.io.FixedLenFeature([], tf.string),
                "clean-image": tf.io.FixedLenFeature([], tf.string),
            }
            example = tf.io.parse_single_example(serialized_example, ds_features)

            img_clean = tf.io.decode_raw(example["clean-image"], tf.float32)
            img_adv = tf.io.decode_raw(example["adv-image"], tf.float32)
            # float values are integers in [0.0, 255.0] for clean and adversarial
            img_clean = tf.cast(img_clean, tf.uint8)
            img_clean = tf.reshape(img_clean, (example["height"], example["width"], 3))
            img_adv = tf.cast(img_adv, tf.uint8)
            img_adv = tf.reshape(img_adv, (example["height"], example["width"], 3))
            return {clean_key: img_clean, adversarial_key: img_adv}, example["label"]

        ds = tf.data.TFRecordDataset(filenames=[path])
        ds = ds.map(lambda x: _parse(x))
        default_graph = tf.compat.v1.keras.backend.get_session().graph
        ds = tfds.as_numpy(ds, graph=default_graph)

        for i, (img, label) in enumerate(ds):
            yield str(i), {
                "images": img,
                "label": label,
            } 
开发者ID:twosixlabs,项目名称:armory,代码行数:37,代码来源:imagenet_adversarial.py

示例14: full

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import reshape [as 别名]
def full(shape, fill_value, dtype=None):  # pylint: disable=redefined-outer-name
  """Returns an array with given shape and dtype filled with `fill_value`.

  Args:
    shape: A valid shape object. Could be a native python object or an object
       of type ndarray, numpy.ndarray or tf.TensorShape.
    fill_value: array_like. Could be an ndarray, a Tensor or any object that can
      be converted to a Tensor using `tf.convert_to_tensor`.
    dtype: Optional, defaults to dtype of the `fill_value`. The type of the
      resulting ndarray. Could be a python type, a NumPy type or a TensorFlow
      `DType`.

  Returns:
    An ndarray.

  Raises:
    ValueError: if `fill_value` can not be broadcast to shape `shape`.
  """
  fill_value = asarray(fill_value, dtype=dtype)
  if utils.isscalar(shape):
    shape = tf.reshape(shape, [1])
  return arrays_lib.tensor_to_ndarray(tf.broadcast_to(fill_value.data, shape))


# Using doc only here since np full_like signature doesn't seem to have the
# shape argument (even though it exists in the documentation online). 
开发者ID:google,项目名称:trax,代码行数:28,代码来源:array_ops.py

示例15: ravel

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import reshape [as 别名]
def ravel(a):  # pylint: disable=missing-docstring
  a = asarray(a)
  if a.ndim == 1:
    return a
  return utils.tensor_to_ndarray(tf.reshape(a.data, [-1])) 
开发者ID:google,项目名称:trax,代码行数:7,代码来源:array_ops.py


注:本文中的tensorflow.compat.v2.reshape方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。