本文整理汇总了Python中tensorflow.compat.v2.reduce_sum方法的典型用法代码示例。如果您正苦于以下问题:Python v2.reduce_sum方法的具体用法?Python v2.reduce_sum怎么用?Python v2.reduce_sum使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.compat.v2
的用法示例。
在下文中一共展示了v2.reduce_sum方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: test_randomized_qmc_basic
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import reduce_sum [as 别名]
def test_randomized_qmc_basic(self):
"""Tests the randomization of the random.halton sequences."""
# This test is identical to the example given in Owen (2017), Figure 5.
dim = 20
num_results = 2000
replica = 5
seed = 121117
values = []
for i in range(replica):
sample, _ = random.halton.sample(dim, num_results=num_results,
seed=seed + i)
f = tf.reduce_mean(
input_tensor=tf.reduce_sum(input_tensor=sample, axis=1)**2)
values.append(self.evaluate(f))
self.assertAllClose(np.mean(values), 101.6667, atol=np.std(values) * 2)
示例2: labels_of_top_ranked_predictions_in_batch
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import reduce_sum [as 别名]
def labels_of_top_ranked_predictions_in_batch(labels, predictions):
"""Applying tf.metrics.mean to this gives precision at 1.
Args:
labels: minibatch of dense 0/1 labels, shape [batch_size rows, num_classes]
predictions: minibatch of predictions of the same shape
Returns:
one-dimension tensor top_labels, where top_labels[i]=1.0 iff the
top-scoring prediction for batch element i has label 1.0
"""
indices_of_top_preds = tf.cast(tf.argmax(input=predictions, axis=1), tf.int32)
batch_size = tf.reduce_sum(input_tensor=tf.ones_like(indices_of_top_preds))
row_indices = tf.range(batch_size)
thresholded_labels = tf.where(labels > 0.0, tf.ones_like(labels),
tf.zeros_like(labels))
label_indices_to_gather = tf.transpose(
a=tf.stack([row_indices, indices_of_top_preds]))
return tf.gather_nd(thresholded_labels, label_indices_to_gather)
示例3: weighted_by_sum
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import reduce_sum [as 别名]
def weighted_by_sum(
self, other):
"""Weight elements in some set by the sum of the scores in some other set.
Args:
other: A NeuralQueryExpression
Returns:
The NeuralQueryExpression that evaluates to the reweighted version of
the set obtained by evaluating 'self'.
"""
provenance = NQExprProvenance(
operation='weighted_by_sum',
inner=self.provenance,
other=other.provenance)
with tf.name_scope('weighted_by_sum'):
return self.context.as_nql(
self.tf * tf.reduce_sum(input_tensor=other.tf, axis=1, keepdims=True),
self._type_name, provenance)
示例4: nonneg_crossentropy
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import reduce_sum [as 别名]
def nonneg_crossentropy(expr, target):
"""A cross entropy operator that is appropriate for NQL outputs.
Query expressions often evaluate to sparse vectors. This evaluates cross
entropy safely.
Args:
expr: a Tensorflow expression for some predicted values.
target: a Tensorflow expression for target values.
Returns:
Tensorflow expression for cross entropy.
"""
expr_replacing_0_with_1 = \
tf.where(expr > 0, expr, tf.ones(tf.shape(input=expr), tf.float32))
cross_entropies = tf.reduce_sum(
input_tensor=-target * tf.math.log(expr_replacing_0_with_1), axis=1)
return tf.reduce_mean(input_tensor=cross_entropies, axis=0)
示例5: sum
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import reduce_sum [as 别名]
def sum(a, axis=None, dtype=None, keepdims=None): # pylint: disable=redefined-builtin
return _reduce(tf.reduce_sum, a, axis=axis, dtype=dtype, keepdims=keepdims,
tf_bool_fn=tf.reduce_any)
示例6: safe_mean
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import reduce_sum [as 别名]
def safe_mean(losses):
total = tf.reduce_sum(losses)
num_elements = tf.dtypes.cast(tf.size(losses), dtype=losses.dtype)
return tf.math.divide_no_nan(total, num_elements)
示例7: _init_norm
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import reduce_sum [as 别名]
def _init_norm(self):
"""Set the norm of the weight vector."""
kernel_norm = tf.sqrt(tf.reduce_sum(tf.square(self.v), axis=self.kernel_norm_axes))
self.g.assign(kernel_norm)
示例8: call
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import reduce_sum [as 别名]
def call(self, y_true, y_pred):
"""See _RankingLoss."""
losses, weights = self._loss.compute_unreduced_loss(
labels=y_true, logits=y_pred)
losses = tf.multiply(losses, weights)
# [batch_size, list_size, list_size]
losses.get_shape().assert_has_rank(3)
# Reduce the loss along the last dim so that weights ([batch_size, 1] or
# [batch_size, list_size] can be applied in __call__.
return tf.reduce_sum(losses, axis=2)
示例9: _randomize
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import reduce_sum [as 别名]
def _randomize(coeffs, radixes, seed, perms=None):
"""Applies the Owen (2017) randomization to the coefficients."""
given_dtype = coeffs.dtype
coeffs = tf.cast(coeffs, dtype=tf.int32)
num_coeffs = _NUM_COEFFS_BY_DTYPE[given_dtype]
radixes = tf.reshape(tf.cast(radixes, dtype=tf.int32), shape=[-1])
if perms is None:
perms = _get_permutations(num_coeffs, radixes, seed)
perms = tf.reshape(perms, shape=[-1])
radix_sum = tf.reduce_sum(input_tensor=radixes)
radix_offsets = tf.reshape(tf.cumsum(radixes, exclusive=True), shape=[-1, 1])
offsets = radix_offsets + tf.range(num_coeffs) * radix_sum
permuted_coeffs = tf.gather(perms, coeffs + offsets)
return tf.cast(permuted_coeffs, dtype=given_dtype), perms
示例10: test_make_val_and_grad_fn
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import reduce_sum [as 别名]
def test_make_val_and_grad_fn(self):
minimum = np.array([1.0, 1.0])
scales = np.array([2.0, 3.0])
@tff.math.make_val_and_grad_fn
def quadratic(x):
return tf.reduce_sum(input_tensor=scales * (x - minimum)**2)
point = tf.constant([2.0, 2.0], dtype=tf.float64)
val, grad = self.evaluate(quadratic(point))
self.assertNear(val, 5.0, 1e-5)
self.assertArrayNear(grad, [4.0, 6.0], 1e-5)
示例11: make_val_and_grad_fn
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import reduce_sum [as 别名]
def make_val_and_grad_fn(value_fn):
"""Function decorator to compute both function value and gradient.
For example:
```
@tff.math.make_val_and_grad_fn
def quadratic(x):
return tf.reduce_sum(scales * (x - minimum) ** 2, axis=-1)
```
Turns `quadratic` into a function that accepts a point as a `Tensor` as input
and returns a tuple of two `Tensor`s with the value and the gradient of the
defined quadratic function evaluated at the input point.
This is useful for constucting functions to optimize with tff.math.optimizer
methods.
Args:
value_fn: A python function to decorate.
Returns:
The decorated function.
"""
@functools.wraps(value_fn)
def val_and_grad(x):
return value_and_gradient(value_fn, x)
return val_and_grad
示例12: test_differential_evolution
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import reduce_sum [as 别名]
def test_differential_evolution(self):
"""Use differential evolution algorithm to minimize a quadratic function."""
minimum = np.array([1.0, 1.0])
scales = np.array([2.0, 3.0])
def quadratic(x):
return tf.reduce_sum(
scales * tf.math.squared_difference(x, minimum), axis=-1)
initial_population = tf.random.uniform([40, 2], seed=1243)
results = self.evaluate(tff_math.optimizer.differential_evolution_minimize(
quadratic,
initial_population=initial_population,
func_tolerance=1e-12,
seed=2484))
self.assertTrue(results.converged)
示例13: _rosenbrock
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import reduce_sum [as 别名]
def _rosenbrock(x):
"""See https://en.wikipedia.org/wiki/Rosenbrock_function."""
term1 = 100 * tf.reduce_sum(tf.square(x[1:] - tf.square(x[:-1])))
term2 = tf.reduce_sum(tf.square(1 - x[:-1]))
return term1 + term2
示例14: test_paraboloid_4th_order
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import reduce_sum [as 别名]
def test_paraboloid_4th_order(self):
self._check_algorithm(
func=lambda x: tf.reduce_sum(x**4),
start_point=[1, 2, 3, 4, 5],
expected_argmin=[0, 0, 0, 0, 0],
gtol=1e-10)
示例15: test_logistic_regression
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import reduce_sum [as 别名]
def test_logistic_regression(self):
dim = 5
n_objs = 10000
np.random.seed(1)
betas = np.random.randn(dim) # The true beta
intercept = np.random.randn() # The true intercept
features = np.random.randn(n_objs, dim) # The feature matrix
probs = 1 / (1 + np.exp(
-np.matmul(features, np.expand_dims(betas, -1)) - intercept))
labels = np.random.binomial(1, probs) # The true labels
regularization = 0.8
feat = tf.constant(features, dtype=tf.float64)
lab = tf.constant(labels, dtype=feat.dtype)
def f_negative_log_likelihood(params):
intercept, beta = params[0], params[1:]
logit = tf.matmul(feat, tf.expand_dims(beta, -1)) + intercept
log_likelihood = tf.reduce_sum(
tf.nn.sigmoid_cross_entropy_with_logits(labels=lab, logits=logit))
l2_penalty = regularization * tf.reduce_sum(beta**2)
total_loss = log_likelihood + l2_penalty
return total_loss
start_point = np.ones(dim + 1)
argmin = [
-2.38636155, 1.61778325, -0.60694238, -0.51523609, -1.09832275,
0.88892742
]
self._check_algorithm(
func=f_negative_log_likelihood,
start_point=start_point,
expected_argmin=argmin,
gtol=1e-5)