本文整理汇总了Python中tensorflow.compat.v2.ones方法的典型用法代码示例。如果您正苦于以下问题:Python v2.ones方法的具体用法?Python v2.ones怎么用?Python v2.ones使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.compat.v2
的用法示例。
在下文中一共展示了v2.ones方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: ones
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import ones [as 别名]
def ones(shape, dtype=float): # pylint: disable=redefined-outer-name
"""Returns an ndarray with the given shape and type filled with ones.
Args:
shape: A fully defined shape. Could be - NumPy array or a python scalar,
list or tuple of integers, - TensorFlow tensor/ndarray of integer type and
rank <=1.
dtype: Optional, defaults to float. The type of the resulting ndarray. Could
be a python type, a NumPy type or a TensorFlow `DType`.
Returns:
An ndarray.
"""
if dtype:
dtype = utils.result_type(dtype)
if isinstance(shape, arrays_lib.ndarray):
shape = shape.data
return arrays_lib.tensor_to_ndarray(tf.ones(shape, dtype=dtype))
示例2: tri
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import ones [as 别名]
def tri(N, M=None, k=0, dtype=None): # pylint: disable=invalid-name,missing-docstring
M = M if M is not None else N
if dtype is not None:
dtype = utils.result_type(dtype)
else:
dtype = dtypes.default_float_type()
if k < 0:
lower = -k - 1
if lower > N:
r = tf.zeros([N, M], dtype)
else:
# Keep as tf bool, since we create an upper triangular matrix and invert
# it.
o = tf.ones([N, M], dtype=tf.bool)
r = tf.cast(tf.math.logical_not(tf.linalg.band_part(o, lower, -1)), dtype)
else:
o = tf.ones([N, M], dtype)
if k > M:
r = o
else:
r = tf.linalg.band_part(o, -1, k)
return utils.tensor_to_ndarray(r)
示例3: test_lbfgs_minimize
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import ones [as 别名]
def test_lbfgs_minimize(self):
"""Use L-BFGS algorithm to optimize randomly generated quadratic bowls."""
np.random.seed(12345)
dim = 10
batches = 50
minima = np.random.randn(batches, dim)
scales = np.exp(np.random.randn(batches, dim))
@tff_math.make_val_and_grad_fn
def quadratic(x):
return tf.reduce_sum(input_tensor=scales * (x - minima) ** 2, axis=-1)
start = tf.ones((batches, dim), dtype='float64')
results = self.evaluate(tff_math.optimizer.lbfgs_minimize(
quadratic, initial_position=start,
stopping_condition=tff_math.optimizer.converged_any,
tolerance=1e-8))
self.assertTrue(results.converged.any())
self.assertEqual(results.position.shape, minima.shape)
self.assertNDArrayNear(
results.position[results.converged], minima[results.converged], 1e-5)
示例4: test_sample_paths_dtypes
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import ones [as 别名]
def test_sample_paths_dtypes(self):
"""Sampled paths have the expected dtypes."""
for dtype in [np.float32, np.float64]:
drift_fn = lambda t, x: tf.sqrt(t) * tf.ones_like(x, dtype=t.dtype)
vol_fn = lambda t, x: t * tf.ones([1, 1], dtype=t.dtype)
paths = self.evaluate(
euler_sampling.sample(
dim=1,
drift_fn=drift_fn, volatility_fn=vol_fn,
times=[0.1, 0.2],
num_samples=10,
initial_state=[0.1],
time_step=0.01,
seed=123,
dtype=dtype))
self.assertEqual(paths.dtype, dtype)
示例5: test_maybe_update_along_axis
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import ones [as 别名]
def test_maybe_update_along_axis(self, dtype):
"""Tests that the values are updated correctly."""
tensor = tf.ones([5, 4, 3, 2], dtype=dtype)
new_tensor = tf.zeros([5, 4, 1, 2], dtype=dtype)
@tf.function
def maybe_update_along_axis(do_update):
return utils.maybe_update_along_axis(
tensor=tensor, new_tensor=new_tensor, axis=1, ind=2,
do_update=do_update)
updated_tensor = maybe_update_along_axis(True)
with self.subTest(name='Shape'):
self.assertEqual(updated_tensor.shape, tensor.shape)
with self.subTest(name='UpdatedVals'):
self.assertAllEqual(updated_tensor[:, 2, :, :],
tf.zeros_like(updated_tensor[:, 2, :, :]))
with self.subTest(name='NotUpdatedVals'):
self.assertAllEqual(updated_tensor[:, 1, :, :],
tf.ones_like(updated_tensor[:, 2, :, :]))
with self.subTest(name='DoNotUpdateVals'):
not_updated_tensor = maybe_update_along_axis(False)
self.assertAllEqual(not_updated_tensor, tensor)
示例6: outer_multiply
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import ones [as 别名]
def outer_multiply(x, y):
"""Performs an outer multiplication of two tensors.
Given two `Tensor`s, `S` and `T` of shape `s` and `t` respectively, the outer
product `P` is a `Tensor` of shape `s + t` whose components are given by:
```none
P_{i1,...ik, j1, ... , jm} = S_{i1...ik} T_{j1, ... jm}
```
Args:
x: A `Tensor` of any shape and numeric dtype.
y: A `Tensor` of any shape and the same dtype as `x`.
Returns:
outer_product: A `Tensor` of shape Shape[x] + Shape[y] and the same dtype
as `x`.
"""
x_shape = tf.shape(x)
padded_shape = tf.concat(
[x_shape, tf.ones(tf.rank(y), dtype=x_shape.dtype)], axis=0)
return tf.reshape(x, padded_shape) * y
示例7: test_sample_paths_dtypes
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import ones [as 别名]
def test_sample_paths_dtypes(self):
"""Sampled paths have the expected dtypes."""
for dtype in [np.float32, np.float64]:
drift_fn = lambda t, x: tf.sqrt(t) * tf.ones_like(x, dtype=t.dtype)
vol_fn = lambda t, x: t * tf.ones([1, 1], dtype=t.dtype)
process = GenericItoProcess(
dim=1, drift_fn=drift_fn, volatility_fn=vol_fn, dtype=dtype)
paths = self.evaluate(
process.sample_paths(
times=[0.1, 0.2],
num_samples=10,
initial_state=[0.1],
time_step=0.01,
seed=123))
self.assertEqual(paths.dtype, dtype)
# Several tests below are unit tests for GenericItoProcess.fd_solver_backward:
# they mock out the pde solver and check only the conversion of SDE to PDE,
# but not PDE solving. There are also integration tests further below.
示例8: nonneg_softmax
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import ones [as 别名]
def nonneg_softmax(expr,
replace_nonpositives = -10):
"""A softmax operator that is appropriate for NQL outputs.
NeuralQueryExpressions often evaluate to sparse vectors of small, nonnegative
values. Softmax for those is dominated by zeros, so this is a fix. This also
fixes the problem that minibatches for NQL are one example per column, not one
example per row.
Args:
expr: a Tensorflow expression for some predicted values.
replace_nonpositives: will replace zeros with this value before computing
softmax.
Returns:
Tensorflow expression for softmax.
"""
if replace_nonpositives != 0.0:
ones = tf.ones(tf.shape(input=expr), tf.float32)
expr = tf.where(expr > 0.0, expr, ones * replace_nonpositives)
return tf.nn.softmax(expr)
示例9: nonneg_crossentropy
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import ones [as 别名]
def nonneg_crossentropy(expr, target):
"""A cross entropy operator that is appropriate for NQL outputs.
Query expressions often evaluate to sparse vectors. This evaluates cross
entropy safely.
Args:
expr: a Tensorflow expression for some predicted values.
target: a Tensorflow expression for target values.
Returns:
Tensorflow expression for cross entropy.
"""
expr_replacing_0_with_1 = \
tf.where(expr > 0, expr, tf.ones(tf.shape(input=expr), tf.float32))
cross_entropies = tf.reduce_sum(
input_tensor=-target * tf.math.log(expr_replacing_0_with_1), axis=1)
return tf.reduce_mean(input_tensor=cross_entropies, axis=0)
示例10: testBatchApply
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import ones [as 别名]
def testBatchApply(self):
time_dim = 4
batch_dim = 5
inputs = {
'a': tf.zeros(shape=(time_dim, batch_dim)),
'b': {
'b_1': tf.ones(shape=(time_dim, batch_dim, 9, 10)),
'b_2': tf.ones(shape=(time_dim, batch_dim, 6)),
}
}
def f(tensors):
np.testing.assert_array_almost_equal(
np.zeros(shape=(time_dim * batch_dim)), tensors['a'].numpy())
np.testing.assert_array_almost_equal(
np.ones(shape=(time_dim * batch_dim, 9, 10)),
tensors['b']['b_1'].numpy())
np.testing.assert_array_almost_equal(
np.ones(shape=(time_dim * batch_dim, 6)), tensors['b']['b_2'].numpy())
return tf.ones(shape=(time_dim * batch_dim, 2))
result = utils.batch_apply(f, inputs)
np.testing.assert_array_almost_equal(
np.ones(shape=(time_dim, batch_dim, 2)), result.numpy())
示例11: _neck
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import ones [as 别名]
def _neck(self, torso_output, state):
# Verify state. It could have been reset if done was true.
expected_state = np.copy(self._current_state.numpy())
done = self._done[self._timestep]
for i, d in enumerate(done):
if d:
expected_state[i] = np.zeros(self._init_state_size)
np.testing.assert_array_almost_equal(expected_state, state.numpy())
# Verify torso_output
expected_torso_output = np.concatenate([
np.ones(shape=(self._batch_size, 50)),
np.zeros(shape=(self._batch_size, 50))
],
axis=1)
np.testing.assert_array_almost_equal(expected_torso_output,
torso_output.numpy())
self._timestep += 1
self._current_state = state + 1
return (tf.ones([self._batch_size, 6]) * self._timestep,
self._current_state)
示例12: testConv
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import ones [as 别名]
def testConv(self):
y = extensions.conv(
np.ones([5, 320, 480, 3], dtype=np.float32),
np.ones([3, 4, 3, 11], dtype=np.float32), [1, 1], "SAME",
("NHWC", "HWIO", "NHWC"))
self.assertAllClose(y.shape, [5, 320, 480, 11])
self.assertAllClose(
y,
tf.nn.conv2d(
input=tf.ones([5, 320, 480, 3], dtype=tf.float32),
filters=tf.ones([3, 4, 3, 11], dtype=tf.float32),
strides=1,
padding="SAME"))
示例13: testAvgPool
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import ones [as 别名]
def testAvgPool(self):
y = extensions.avg_pool(np.ones([5, 320, 480, 3]), [3, 5], [2, 3], "VALID")
self.assertAllEqual(
y,
tf.nn.pool(
input=tf.ones([5, 320, 480, 3]),
window_shape=[3, 5],
pooling_type="AVG",
padding="VALID",
strides=[2, 3],
))
示例14: testMaxPool
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import ones [as 别名]
def testMaxPool(self):
y = extensions.max_pool(np.ones([5, 320, 480, 3]), [3, 5], [2, 3], "VALID")
self.assertAllEqual(
y,
tf.nn.pool(
input=tf.ones([5, 320, 480, 3]),
window_shape=[3, 5],
pooling_type="MAX",
padding="VALID",
strides=[2, 3],
))
示例15: eye
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import ones [as 别名]
def eye(N, M=None, k=0, dtype=float): # pylint: disable=invalid-name,missing-docstring
if dtype:
dtype = utils.result_type(dtype)
if not M:
M = N
# Making sure N, M and k are `int`
N = int(N)
M = int(M)
k = int(k)
if k >= M or -k >= N:
# tf.linalg.diag will raise an error in this case
return zeros([N, M], dtype=dtype)
if k == 0:
return arrays_lib.tensor_to_ndarray(tf.eye(N, M, dtype=dtype))
# We need the precise length, otherwise tf.linalg.diag will raise an error
diag_len = min(N, M)
if k > 0:
if N >= M:
diag_len -= k
elif N + k > M:
diag_len = M - k
elif k <= 0:
if M >= N:
diag_len += k
elif M - k > N:
diag_len = N + k
diagonal_ = tf.ones([diag_len], dtype=dtype)
return arrays_lib.tensor_to_ndarray(
tf.linalg.diag(diagonal=diagonal_, num_rows=N, num_cols=M, k=k))