本文整理汇总了Python中tensorflow.compat.v2.one_hot方法的典型用法代码示例。如果您正苦于以下问题:Python v2.one_hot方法的具体用法?Python v2.one_hot怎么用?Python v2.one_hot使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.compat.v2
的用法示例。
在下文中一共展示了v2.one_hot方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: _batch_jacobian
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import one_hot [as 别名]
def _batch_jacobian(y, x, tape):
"""Computes a Jacobian w.r.t. last dimensions of y and x."""
# y and x must have the same batch dimensions.
# For input shapes (b, dy), (b, dx) yields shape (b, dy, dx).
d = y.shape.as_list()[-1]
if d is None:
raise ValueError("Last dimension of state Tensors must be known.")
grads = []
for i in range(d):
w = tf.broadcast_to(tf.one_hot(i, d, dtype=y.dtype), y.shape)
# We must use tf.UnconnectedGradients.ZERO here and below, because some
# state components may legitimately not depend on each other or some of the
# params.
grad = tape.gradient(y, x, output_gradients=w,
unconnected_gradients=tf.UnconnectedGradients.ZERO)
grads.append(grad)
return tf.stack(grads, axis=-2)
示例2: train_step
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import one_hot [as 别名]
def train_step(model, loss_fn, optimizer_fn, metric, image, label):
"""Perform one training step for the model.
Args:
model: Keras model to train.
loss_fn: Loss function to use.
optimizer_fn: Optimizer function to use.
metric: keras.metric to use.
image: Tensor of training images of shape [batch_size, 28, 28, 1].
label: Tensor of class labels of shape [batch_size].
"""
with tf.GradientTape() as tape:
preds = model(image)
label_onehot = tf.one_hot(label, 10)
loss_ = loss_fn(label_onehot, preds)
grads = tape.gradient(loss_, model.trainable_variables)
optimizer_fn.apply_gradients(zip(grads, model.trainable_variables))
metric(loss_)
示例3: _write_to_accumulators
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import one_hot [as 别名]
def _write_to_accumulators(nested_acc, nested_tensor, index):
if isinstance(nested_tensor, tf.Tensor):
assert isinstance(nested_acc, tf.Tensor)
acc_size = nested_acc.shape.as_list()[0]
one_hot = tf.one_hot(index, depth=acc_size)
one_hot = tf.reshape(one_hot, [acc_size] + [1] * len(nested_tensor.shape))
return tf.where(one_hot > 0, nested_tensor, nested_acc)
return [_write_to_accumulators(acc, t, index)
for acc, t in zip(nested_acc, nested_tensor)]
示例4: convert_to_one_hot
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import one_hot [as 别名]
def convert_to_one_hot(self, samples):
return tf.one_hot(
tf.argmax(samples, axis=-1),
self.distribution.event_size, dtype=self._output_dtype)
示例5: _sample_channels
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import one_hot [as 别名]
def _sample_channels(self, component_logits, locs, scales, coeffs=None, seed=None):
"""Sample a single pixel-iteration and apply channel conditioning.
Args:
component_logits: 4D `Tensor` of logits for the Categorical distribution
over Quantized Logistic mixture components. Dimensions are `[batch_size,
height, width, num_logistic_mix]`.
locs: 4D `Tensor` of location parameters for the Quantized Logistic
mixture components. Dimensions are `[batch_size, height, width,
num_logistic_mix, num_channels]`.
scales: 4D `Tensor` of location parameters for the Quantized Logistic
mixture components. Dimensions are `[batch_size, height, width,
num_logistic_mix, num_channels]`.
coeffs: 4D `Tensor` of coefficients for the linear dependence among color
channels, or `None` if there is only one channel. Dimensions are
`[batch_size, height, width, num_logistic_mix, num_coeffs]`, where
`num_coeffs = num_channels * (num_channels - 1) // 2`.
seed: `int`, random seed.
Returns:
samples: 4D `Tensor` of sampled image data with autoregression among
channels. Dimensions are `[batch_size, height, width, num_channels]`.
"""
num_channels = self.event_shape[-1]
# sample mixture components once for the entire pixel
component_dist = categorical.Categorical(logits=component_logits)
mask = tf.one_hot(indices=component_dist.sample(seed=seed), depth=self._num_logistic_mix)
mask = tf.cast(mask[..., tf.newaxis], self.dtype)
# apply mixture component mask and separate out RGB parameters
masked_locs = tf.reduce_sum(locs * mask, axis=-2)
loc_tensors = tf.split(masked_locs, num_channels, axis=-1)
masked_scales = tf.reduce_sum(scales * mask, axis=-2)
scale_tensors = tf.split(masked_scales, num_channels, axis=-1)
if coeffs is not None:
num_coeffs = num_channels * (num_channels - 1) // 2
masked_coeffs = tf.reduce_sum(coeffs * mask, axis=-2)
coef_tensors = tf.split(masked_coeffs, num_coeffs, axis=-1)
channel_samples = []
coef_count = 0
for i in range(num_channels):
loc = loc_tensors[i]
for c in channel_samples:
loc += c * coef_tensors[coef_count]
coef_count += 1
logistic_samp = logistic.Logistic(loc=loc, scale=scale_tensors[i]).sample(seed=seed)
logistic_samp = tf.clip_by_value(logistic_samp, -1., 1.)
channel_samples.append(logistic_samp)
return tf.concat(channel_samples, axis=-1)
示例6: _sample_paths
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import one_hot [as 别名]
def _sample_paths(self, times, grid_step, keep_mask, num_requested_times,
num_samples, initial_state, random_type, seed, swap_memory):
"""Returns a sample of paths from the process."""
dt = times[1:] - times[:-1]
sqrt_dt = tf.sqrt(dt)
current_state = initial_state + tf.zeros(
[num_samples, self.dim()], dtype=initial_state.dtype)
steps_num = tf.shape(dt)[-1]
wiener_mean = tf.zeros((self.dim(), 1), dtype=self._dtype)
cond_fn = lambda i, *args: i < steps_num
def step_fn(i, written_count, current_state, result):
"""Performs one step of Euler scheme."""
current_time = times[i + 1]
dw = random_ops.mv_normal_sample((num_samples,),
mean=wiener_mean,
random_type=random_type,
seed=seed)
dw = dw * sqrt_dt[i]
dt_inc = dt[i] * self.drift_fn()(current_time, current_state) # pylint: disable=not-callable
dw_inc = tf.squeeze(
tf.matmul(self.volatility_fn()(current_time, current_state), dw), -1) # pylint: disable=not-callable
next_state = current_state + dt_inc + dw_inc
def write_next_state_to_result():
# Replace result[:, written_count, :] with next_state.
one_hot = tf.one_hot(written_count, depth=num_requested_times)
mask = tf.expand_dims(one_hot > 0, axis=-1)
return tf.where(mask, tf.expand_dims(next_state, axis=1), result)
# Keep only states for times requested by user.
result = tf.cond(keep_mask[i + 1],
write_next_state_to_result,
lambda: result)
written_count += tf.cast(keep_mask[i + 1], dtype=tf.int32)
return i + 1, written_count, next_state, result
# Maximum number iterations is passed to the while loop below. It improves
# performance of the while loop on a GPU and is needed for XLA-compilation
# comptatiblity
maximum_iterations = (
tf.cast(1. / grid_step, dtype=tf.int32) + tf.size(times))
result = tf.zeros((num_samples, num_requested_times, self.dim()))
_, _, _, result = tf.compat.v1.while_loop(
cond_fn,
step_fn, (0, 0, current_state, result),
maximum_iterations=maximum_iterations,
swap_memory=swap_memory)
return result