当前位置: 首页>>代码示例>>Python>>正文


Python v2.name_scope方法代码示例

本文整理汇总了Python中tensorflow.compat.v2.name_scope方法的典型用法代码示例。如果您正苦于以下问题:Python v2.name_scope方法的具体用法?Python v2.name_scope怎么用?Python v2.name_scope使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.compat.v2的用法示例。


在下文中一共展示了v2.name_scope方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __init__

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import name_scope [as 别名]
def __init__(self,
                 shift,
                 validate_args=False,
                 name='shift'):
        """Instantiates the `Shift` bijector which computes `Y = g(X; shift) = X + shift`
        where `shift` is a numeric `Tensor`.
        Args:
          shift: Floating-point `Tensor`.
          validate_args: Python `bool` indicating whether arguments should be
            checked for correctness.
          name: Python `str` name given to ops managed by this object.
        """
        with tf.name_scope(name) as name:
            dtype = dtype_util.common_dtype([shift], dtype_hint=tf.float32)
            self._shift = tensor_util.convert_nonref_to_tensor(shift, dtype=dtype, name='shift')
            super(Shift, self).__init__(
              forward_min_event_ndims=0,
              is_constant_jacobian=True,
              dtype=dtype,
              validate_args=validate_args,
              name=name
            ) 
开发者ID:SeldonIO,项目名称:alibi-detect,代码行数:24,代码来源:pixelcnn.py

示例2: __init__

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import name_scope [as 别名]
def __init__(self,
               mu,
               sigma,
               dtype=None,
               name=None):
    """Initializes the Geometric Brownian Motion.

    Args:
      mu: Scalar real `Tensor`. Corresponds to the mean of the Ito process.
      sigma: Scalar real `Tensor` of the same `dtype` as `mu`. Corresponds to
        the volatility of the process.
      dtype: The default dtype to use when converting values to `Tensor`s.
        Default value: `None` which means that default dtypes inferred by
          TensorFlow are used.
      name: Python string. The name to give to the ops created by this class.
        Default value: `None` which maps to the default name
        'geometric_brownian_motion'.
    """
    self._name = name or "geometric_brownian_motion"
    with tf.name_scope(self._name):
      self._mu = tf.convert_to_tensor(mu, dtype=dtype, name="mu")
      self._dtype = self._mu.dtype
      self._sigma = tf.convert_to_tensor(sigma, dtype=self._dtype, name="sigma")
      self._dim = 1 
开发者ID:google,项目名称:tf-quant-finance,代码行数:26,代码来源:univariate_geometric_brownian_motion.py

示例3: weighted_by_sum

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import name_scope [as 别名]
def weighted_by_sum(
      self, other):
    """Weight elements in some set by the sum of the scores in some other set.

    Args:
      other: A NeuralQueryExpression

    Returns:
      The NeuralQueryExpression that evaluates to the reweighted version of
    the set obtained by evaluating 'self'.
    """
    provenance = NQExprProvenance(
        operation='weighted_by_sum',
        inner=self.provenance,
        other=other.provenance)
    with tf.name_scope('weighted_by_sum'):
      return self.context.as_nql(
          self.tf * tf.reduce_sum(input_tensor=other.tf, axis=1, keepdims=True),
          self._type_name, provenance) 
开发者ID:google-research,项目名称:language,代码行数:21,代码来源:__init__.py

示例4: price

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import name_scope [as 别名]
def price(self, valuation_date, market, model=None, pricing_context=None,
            name=None):
    """Returns the present value of the instrument on the valuation date.

    Args:
      valuation_date: A scalar `DateTensor` specifying the date on which
        valuation is being desired.
      market: A namedtuple of type `InterestRateMarket` which contains the
        necessary information for pricing the interest rate swap.
      model: Reserved for future use.
      pricing_context: Additional context relevant for pricing.
      name: Python str. The name to give to the ops created by this function.
        Default value: `None` which maps to 'price'.

    Returns:
      A Rank 1 `Tensor` of real type containing the modeled price of each IRS
      contract based on the input market data.
    """

    name = name or (self._name + '_price')
    with tf.name_scope(name):
      valuation_date = dates.convert_to_date_tensor(valuation_date)
      pay_cf = self._pay_leg.price(valuation_date, market, model,
                                   pricing_context)
      receive_cf = self._receive_leg.price(valuation_date, market, model,
                                           pricing_context)
      return receive_cf - pay_cf 
开发者ID:google,项目名称:tf-quant-finance,代码行数:29,代码来源:interest_rate_swap.py

示例5: __init__

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import name_scope [as 别名]
def __init__(self,
               swap,
               expiry_date=None,
               dtype=None,
               name=None):
    """Initialize a batch of European swaptions.

    Args:
      swap: An instance of `InterestRateSwap` specifying the interest rate
        swaps underlying the swaptions. The batch size of the swaptions being
        created would be the same as the batch size of the `swap`.
      expiry_date: An optional rank 1 `DateTensor` specifying the expiry dates
        for each swaption. The shape of the input should be the same as the
        batch size of the `swap` input.
        Default value: None in which case the option expity date is the same as
        the start date of each underlying swap.
      dtype: `tf.Dtype`. If supplied the dtype for the real variables or ops
        either supplied to the Swaption object or created by the Swaption
        object.
        Default value: None which maps to the default dtype inferred by
        TensorFlow.
      name: Python str. The name to give to the ops created by this class.
        Default value: `None` which maps to 'swaption'.
    """
    self._name = name or 'swaption'

    with tf.name_scope(self._name):
      self._dtype = dtype
      self._expiry_date = dates.convert_to_date_tensor(expiry_date)
      self._swap = swap 
开发者ID:google,项目名称:tf-quant-finance,代码行数:32,代码来源:swaption.py

示例6: __init__

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import name_scope [as 别名]
def __init__(self,
               start_date,
               end_date,
               coupon_spec,
               dtype=None,
               name=None):
    """Initialize a batch of CMS cashflow streams.

    Args:
      start_date: A rank 1 `DateTensor` specifying the starting dates of the
        accrual of the first coupon of the cashflow stream. The shape of the
        input correspond to the numbercof streams being created.
      end_date: A rank 1 `DateTensor` specifying the end dates for accrual of
        the last coupon in each cashflow stream. The shape of the input should
        be the same as that of `start_date`.
      coupon_spec: A list of `CMSCouponSpecs` specifying the details of the
        coupon payment for the cashflow stream. The length of the list should
        be the same as the number of streams being created. Each coupon within
        the list must have the same daycount_convention and businessday_rule.
      dtype: `tf.Dtype`. If supplied the dtype for the real variables or ops
        either supplied to the FloatingCashflowStream object or created by the
        object.
        Default value: None which maps to the default dtype inferred by
        TensorFlow.
      name: Python str. The name to give to the ops created by this class.
        Default value: `None` which maps to 'floating_cashflow_stream'.
    """

    super(CMSCashflowStream, self).__init__()
    self._name = name or 'cms_cashflow_stream'

    with tf.name_scope(self._name):
      self._start_date = dates.convert_to_date_tensor(start_date)
      self._end_date = dates.convert_to_date_tensor(end_date)
      self._batch_size = self._start_date.shape[0]
      self._first_coupon_date = None
      self._penultimate_coupon_date = None
      self._dtype = dtype

      self._setup(coupon_spec) 
开发者ID:google,项目名称:tf-quant-finance,代码行数:42,代码来源:cms_swap.py

示例7: price

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import name_scope [as 别名]
def price(self, valuation_date, market, model=None, pricing_context=None,
            name=None):
    """Returns the present value of the instrument on the valuation date.

    Args:
      valuation_date: A scalar `DateTensor` specifying the date on which
        valuation is being desired.
      market: A namedtuple of type `InterestRateMarket` which contains the
        necessary information for pricing the interest rate swap.
      model: An optional input of type `InterestRateModelType` to specify the
        model to use for `convexity correction` while pricing individual
        swaplets of the cms swap. When `model` is
        `InterestRateModelType.LOGNORMAL_SMILE_CONSISTENT_REPLICATION` or
        `InterestRateModelType.NORMAL_SMILE_CONSISTENT_REPLICATION`, the
        function uses static replication (from lognormal and normal swaption
        implied volatility data respectively) as described in [1]. When `model`
        is `InterestRateModelType.LOGNORMAL_RATE` or
        `InterestRateModelType.NORMAL_RATE`, the function uses analytic
        approximations for the convexity adjustment based on lognormal and
        normal swaption rate dyanmics respectively [1].
        Default value: `None` in which case convexity correction is not used.
      pricing_context: Additional context relevant for pricing.
      name: Python str. The name to give to the ops created by this function.
        Default value: `None` which maps to 'price'.

    Returns:
      A Rank 1 `Tensor` of real type containing the modeled price of each IRS
      contract based on the input market data.

    #### References:
    [1]: Patrick S. Hagan. Convexity conundrums: Pricing cms swaps, caps and
    floors. WILMOTT magazine.
    """

    name = name or (self._name + '_price')
    with tf.name_scope(name):
      return super(CMSSwap, self).price(valuation_date, market, model,
                                        pricing_context, name) 
开发者ID:google,项目名称:tf-quant-finance,代码行数:40,代码来源:cms_swap.py

示例8: price

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import name_scope [as 别名]
def price(self, valuation_date, market, model=None, pricing_context=None,
            name=None):
    """Returns the present value of the stream on the valuation date.

    Args:
      valuation_date: A scalar `DateTensor` specifying the date on which
        valuation is being desired.
      market: A namedtuple of type `InterestRateMarket` which contains the
        necessary information for pricing the cashflow stream.
      model: Reserved for future use.
      pricing_context: Additional context relevant for pricing.
      name: Python str. The name to give to the ops created by this function.
        Default value: `None` which maps to 'price'.

    Returns:
      A Rank 1 `Tensor` of real type containing the modeled price of each stream
      based on the input market data.
    """

    del model, pricing_context
    name = name or (self._name + '_price')
    with tf.name_scope(name):
      discount_curve = market.discount_curve
      discount_factors = discount_curve.get_discount_factor(
          self._payment_dates)
      future_cashflows = tf.cast(self._payment_dates >= valuation_date,
                                 dtype=self._dtype)
      cashflow_pvs = self._notional * (
          future_cashflows * self._daycount_fractions * self._coupon_rate *
          discount_factors)
      return tf.math.reduce_sum(
          tf.reshape(cashflow_pvs, (self._batch_size, self._num_cashflows)),
          axis=1) 
开发者ID:google,项目名称:tf-quant-finance,代码行数:35,代码来源:cashflow_stream.py

示例9: price

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import name_scope [as 别名]
def price(self, valuation_date, market, model=None, name=None):
    """Returns the dirty price of the bonds on the valuation date.

    Args:
      valuation_date: A scalar `DateTensor` specifying the date on which
        valuation is being desired.
      market: A namedtuple of type `InterestRateMarket` which contains the
        necessary information for pricing the bonds.
      model: Reserved for future use.
      name: Python str. The name to give to the ops created by this function.
        Default value: `None` which maps to 'price'.

    Returns:
      A Rank 1 `Tensor` of real dtype containing the dirty price of each bond
      based on the input market data.
    """

    name = name or (self._name + '_price')
    with tf.name_scope(name):
      discount_curve = market.discount_curve
      coupon_cf = self._cashflows.price(valuation_date, market, model)
      principal_cf = (
          self._notional * discount_curve.get_discount_factor(
              self._maturity_date)
          )
      return coupon_cf + principal_cf 
开发者ID:google,项目名称:tf-quant-finance,代码行数:28,代码来源:bond.py

示例10: price

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import name_scope [as 别名]
def price(self, valuation_date, market, model=None, name=None):
    """Returns the price of the contract on the valuation date.

    Args:
      valuation_date: A scalar `DateTensor` specifying the date on which
        valuation is being desired.
      market: An object of type `InterestRateMarket` which contains the
        necessary information for pricing the FRA instrument.
      model: Reserved for future use.
      name: Python string. The name to give this op.
        Default value: `None` which maps to `price`.

    Returns:
      A Rank 1 `Tensor` of real type containing the modeled price of each
      futures contract based on the input market data.
    """

    del model, valuation_date

    name = name or (self._name + '_price')
    with tf.name_scope(name):
      reference_curve = market.reference_curve

      df1 = reference_curve.get_discount_factor(self._accrual_start_dates)
      df2 = reference_curve.get_discount_factor(self._accrual_end_dates)

      fwd_rates = (df1 / df2 - 1.) / self._accrual_daycount

      total_accrual = tf.math.segment_sum(self._daycount_fractions,
                                          self._contract_idx)
      if self._averaging_type == rc.AverageType.ARITHMETIC_AVERAGE:

        settlement_rate = tf.math.segment_sum(
            fwd_rates * self._daycount_fractions,
            self._contract_idx) / total_accrual
      else:
        settlement_rate = (tf.math.segment_prod(
            1. + fwd_rates * self._daycount_fractions, self._contract_idx) -
                           1.) / total_accrual

      return 100. * (1. - settlement_rate) 
开发者ID:google,项目名称:tf-quant-finance,代码行数:43,代码来源:overnight_index_linked_futures.py

示例11: price

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import name_scope [as 别名]
def price(self, valuation_date, market, model=None, pricing_context=None,
            name=None):
    """Returns the present value of the Cap/Floor on the valuation date.

    Args:
      valuation_date: A scalar `DateTensor` specifying the date on which
        valuation is being desired.
      market: A namedtuple of type `InterestRateMarket` which contains the
        necessary information for pricing the Cap/Floor.
      model: An optional input of type `InterestRateModelType` to specify which
        model to use for pricing.
        Default value: `None` in which case `LOGNORMAL_RATE` model is used.
      pricing_context: An optional input to provide additional parameters (such
        as model parameters) relevant for pricing.
      name: Python str. The name to give to the ops created by this function.
        Default value: `None` which maps to `"price"`.

    Returns:
      A Rank 1 `Tensor` of real type containing the modeled price of each cap
      (or floor) based on the input market data.

    Raises:
      ValueError: If an unsupported model is supplied to the function.
    """

    model = model or rc.InterestRateModelType.LOGNORMAL_RATE
    name = name or (self._name + '_price')
    with tf.name_scope(name):
      valuation_date = dates.convert_to_date_tensor(valuation_date)
      if model == rc.InterestRateModelType.LOGNORMAL_RATE:
        caplet_prices = self._price_lognormal_rate(valuation_date, market,
                                                   pricing_context)
      else:
        raise ValueError(f'Unsupported model {model}.')

      return tf.math.segment_sum(caplet_prices, self._contract_index) 
开发者ID:google,项目名称:tf-quant-finance,代码行数:38,代码来源:cap_floor.py

示例12: _put_valuer

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import name_scope [as 别名]
def _put_valuer(sample_paths, time_index, strike_price, dtype=None, name=None):
  """Produces a callable from samples to payoff of a simple basket put option.

  Args:
    sample_paths: A `Tensor` of either `flaot32` or `float64` dtype and of
      shape `[num_samples, num_times, dim]`.
    time_index: An integer scalar `Tensor` that corresponds to the time
      coordinate at which the basis function is computed.
    strike_price: A `Tensor` of the same `dtype` as `sample_paths` and shape
      `[num_samples, num_strikes]`.
    dtype: Optional `dtype`. Either `tf.float32` or `tf.float64`. The `dtype`
      If supplied, represents the `dtype` for the 'strike_price' as well as
      for the input argument of the output payoff callable.
      Default value: `None`, which means that the `dtype` inferred by TensorFlow
      is used.
    name: Python `str` name prefixed to Ops created by the callable created
      by this function.
      Default value: `None` which is mapped to the default name 'put_valuer'

  Returns:
    A callable from `Tensor` of shape `[num_samples, num_exercise_times, dim]`
    and a scalar `Tensor` representing current time to a `Tensor` of shape
    `[num_samples, num_strikes]`.
  """
  name = name or "put_valuer"
  with tf.name_scope(name):
    strike_price = tf.convert_to_tensor(strike_price, dtype=dtype,
                                        name="strike_price")
    sample_paths = tf.convert_to_tensor(sample_paths, dtype=dtype,
                                        name="sample_paths")
    num_samples, _, dim = sample_paths.shape.as_list()

    slice_sample_paths = tf.slice(sample_paths, [0, time_index, 0],
                                  [num_samples, 1, dim])
    slice_sample_paths = tf.squeeze(slice_sample_paths, 1)
    average = tf.math.reduce_mean(slice_sample_paths, axis=-1, keepdims=True)
    return tf.nn.relu(strike_price - average) 
开发者ID:google,项目名称:tf-quant-finance,代码行数:39,代码来源:payoff.py

示例13: actual_365_fixed

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import name_scope [as 别名]
def actual_365_fixed(*,
                     start_date,
                     end_date,
                     schedule_info=None,
                     dtype=None,
                     name=None):
  """Computes the year fraction between the specified dates.

  The actual/365 convention specifies the year fraction between the start and
  end date as the actual number of days between the two dates divided by 365.

  Note that the schedule info is not needed for this convention and is ignored
  if supplied.

  For more details see:
  https://en.wikipedia.org/wiki/Day_count_convention#Actual/365_Fixed

  Args:
    start_date: A `DateTensor` object of any shape.
    end_date: A `DateTensor` object of compatible shape with `start_date`.
    schedule_info: The schedule info. Ignored for this convention.
    dtype: The dtype of the result. Either `tf.float32` or `tf.float64`. If not
      supplied, `tf.float32` is returned.
    name: Python `str` name prefixed to ops created by this function. If not
      supplied, `actual_365_fixed` is used.

  Returns:
    A real `Tensor` of supplied `dtype` and shape of `start_date`. The year
    fraction between the start and end date as computed by Actual/365 fixed
    convention.
  """
  del schedule_info
  with tf.name_scope(name or 'actual_365_fixed'):
    end_date = dt.convert_to_date_tensor(end_date)
    start_date = dt.convert_to_date_tensor(start_date)
    dtype = dtype or tf.constant(0.).dtype
    actual_days = tf.cast(start_date.days_until(end_date), dtype=dtype)
    return actual_days / 365 
开发者ID:google,项目名称:tf-quant-finance,代码行数:40,代码来源:daycounts.py

示例14: nested_ifs_and_context_managers

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import name_scope [as 别名]
def nested_ifs_and_context_managers(x):
  with tf.name_scope(''):
    if x > 0:
      if x < 5:
        with tf.name_scope(''):
          return x
      else:
        return x * x
    else:
      return x * x * x 
开发者ID:tensorflow,项目名称:autograph,代码行数:12,代码来源:early_return_test.py

示例15: unreachable_return

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import name_scope [as 别名]
def unreachable_return(x):
  with tf.name_scope(''):
    if x > 0:
      if x < 5:
        with tf.name_scope(''):
          return x
      else:
        return x * x
    else:
      return x * x * x
  return x * x * x * x 
开发者ID:tensorflow,项目名称:autograph,代码行数:13,代码来源:early_return_test.py


注:本文中的tensorflow.compat.v2.name_scope方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。