当前位置: 首页>>代码示例>>Python>>正文


Python v2.int64方法代码示例

本文整理汇总了Python中tensorflow.compat.v2.int64方法的典型用法代码示例。如果您正苦于以下问题:Python v2.int64方法的具体用法?Python v2.int64怎么用?Python v2.int64使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.compat.v2的用法示例。


在下文中一共展示了v2.int64方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: _info

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import int64 [as 别名]
def _info(self):
        return tfds.core.DatasetInfo(
            builder=self,
            description=_DESCRIPTION,
            features=tfds.features.FeaturesDict(
                {
                    "images": {
                        "clean": tfds.features.Tensor(
                            shape=[224, 224, 3], dtype=tf.uint8
                        ),
                        "adversarial": tfds.features.Tensor(
                            shape=[224, 224, 3], dtype=tf.uint8
                        ),
                    },
                    "label": tfds.features.Tensor(shape=(), dtype=tf.int64),
                }
            ),
            supervised_keys=("images", "label"),
        ) 
开发者ID:twosixlabs,项目名称:armory,代码行数:21,代码来源:imagenet_adversarial.py

示例2: _info

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import int64 [as 别名]
def _info(self):
        return tfds.core.DatasetInfo(
            builder=self,
            description=_DESCRIPTION,
            features=tfds.features.FeaturesDict(
                {
                    "speech": tfds.features.Audio(),
                    "text": tfds.features.Text(
                        encoder_config=self.builder_config.text_encoder_config
                    ),
                    "speaker_id": tf.int64,
                    "chapter_id": tf.int64,
                    "id": tf.string,
                    "label": tfds.features.ClassLabel(names=_LABELS),
                }
            ),
            supervised_keys=("speech", "label"),
            homepage=_URL,
            citation=_CITATION,
            metadata=tfds.core.MetadataDict(sample_rate=16000,),
        ) 
开发者ID:twosixlabs,项目名称:armory,代码行数:23,代码来源:librispeech_dev_clean_split.py

示例3: _key2seed

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import int64 [as 别名]
def _key2seed(a):
  """Converts an RNG key to an RNG seed.

  Args:
    a: an RNG key, an ndarray of shape [] and dtype `np.int64`.

  Returns:
    an RNG seed, a tensor of shape [2] and dtype `tf.int32`.
  """

  def int64_to_int32s(a):
    """Converts an int64 tensor of shape [] to an int32 tensor of shape [2]."""
    a = tf.cast(a, tf.uint64)
    fst = tf.cast(a, tf.uint32)
    snd = tf.cast(
        tf.bitwise.right_shift(a, tf.constant(32, tf.uint64)), tf.uint32)
    a = [fst, snd]
    a = tf.nest.map_structure(lambda x: tf.cast(x, tf.int32), a)
    a = tf.stack(a)
    return a

  return int64_to_int32s(a.data) 
开发者ID:google,项目名称:trax,代码行数:24,代码来源:extensions.py

示例4: _seed2key

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import int64 [as 别名]
def _seed2key(a):
  """Converts an RNG seed to an RNG key.

  Args:
    a: an RNG seed, a tensor of shape [2] and dtype `tf.int32`.

  Returns:
    an RNG key, an ndarray of shape [] and dtype `np.int64`.
  """

  def int32s_to_int64(a):
    """Converts an int32 tensor of shape [2] to an int64 tensor of shape []."""
    a = tf.bitwise.bitwise_or(
        tf.cast(a[0], tf.uint64),
        tf.bitwise.left_shift(
            tf.cast(a[1], tf.uint64), tf.constant(32, tf.uint64)))
    a = tf.cast(a, tf.int64)
    return a

  return tf_np.asarray(int32s_to_int64(a)) 
开发者ID:google,项目名称:trax,代码行数:22,代码来源:extensions.py

示例5: true_divide

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import int64 [as 别名]
def true_divide(x1, x2):
  def _avoid_float64(x1, x2):
    if x1.dtype == x2.dtype and x1.dtype in (tf.int32, tf.int64):
      x1 = tf.cast(x1, dtype=tf.float32)
      x2 = tf.cast(x2, dtype=tf.float32)
    return x1, x2

  def f(x1, x2):
    if x1.dtype == tf.bool:
      assert x2.dtype == tf.bool
      float_ = dtypes.default_float_type()
      x1 = tf.cast(x1, float_)
      x2 = tf.cast(x2, float_)
    if not dtypes.is_allow_float64():
      # tf.math.truediv in Python3 produces float64 when both inputs are int32
      # or int64. We want to avoid that when is_allow_float64() is False.
      x1, x2 = _avoid_float64(x1, x2)
    return tf.math.truediv(x1, x2)
  return _bin_op(f, x1, x2) 
开发者ID:google,项目名称:trax,代码行数:21,代码来源:math_ops.py

示例6: _testBinOp

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import int64 [as 别名]
def _testBinOp(self, a, b, out, f, types=None):
    a = t2a(tf.convert_to_tensor(value=a, dtype=np.int32))
    b = t2a(tf.convert_to_tensor(value=b, dtype=np.int32))
    if not isinstance(out, arrays.ndarray):
      out = t2a(tf.convert_to_tensor(value=out, dtype=np.int32))
    if types is None:
      types = [[np.int32, np.int32, np.int32],
               [np.int64, np.int32, np.int64],
               [np.int32, np.int64, np.int64],
               [np.float32, np.int32, np.float64],
               [np.int32, np.float32, np.float64],
               [np.float32, np.float32, np.float32],
               [np.float64, np.float32, np.float64],
               [np.float32, np.float64, np.float64]]
    for a_type, b_type, out_type in types:
      o = f(a.astype(a_type), b.astype(b_type))
      self.assertIs(o.dtype.type, out_type)
      self.assertAllEqual(out.astype(out_type), o) 
开发者ID:google,项目名称:trax,代码行数:20,代码来源:arrays_test.py

示例7: testCumProdAndSum

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import int64 [as 别名]
def testCumProdAndSum(self):

    def run_test(arr, *args, **kwargs):
      for fn in self.array_transforms:
        arg = fn(arr)
        self.match(
            array_ops.cumprod(arg, *args, **kwargs),
            np.cumprod(arg, *args, **kwargs))
        self.match(
            array_ops.cumsum(arg, *args, **kwargs),
            np.cumsum(arg, *args, **kwargs))

    run_test([])
    run_test([1, 2, 3])
    run_test([1, 2, 3], dtype=float)
    run_test([1, 2, 3], dtype=np.float32)
    run_test([1, 2, 3], dtype=np.float64)
    run_test([1., 2., 3.])
    run_test([1., 2., 3.], dtype=int)
    run_test([1., 2., 3.], dtype=np.int32)
    run_test([1., 2., 3.], dtype=np.int64)
    run_test([[1, 2], [3, 4]], axis=1)
    run_test([[1, 2], [3, 4]], axis=0)
    run_test([[1, 2], [3, 4]], axis=-1)
    run_test([[1, 2], [3, 4]], axis=-2) 
开发者ID:google,项目名称:trax,代码行数:27,代码来源:array_ops_test.py

示例8: setUp

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import int64 [as 别名]
def setUp(self):
    super(LogicTest, self).setUp()
    self.array_transforms = [
        lambda x: x,  # Identity,
        tf.convert_to_tensor,
        np.array,
        lambda x: np.array(x, dtype=np.int32),
        lambda x: np.array(x, dtype=np.int64),
        lambda x: np.array(x, dtype=np.float32),
        lambda x: np.array(x, dtype=np.float64),
        array_ops.array,
        lambda x: array_ops.array(x, dtype=tf.int32),
        lambda x: array_ops.array(x, dtype=tf.int64),
        lambda x: array_ops.array(x, dtype=tf.float32),
        lambda x: array_ops.array(x, dtype=tf.float64),
    ] 
开发者ID:google,项目名称:trax,代码行数:18,代码来源:logic_test.py

示例9: testOutputIsPermutation

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import int64 [as 别名]
def testOutputIsPermutation(self):
    """Checks that stateless_random_shuffle outputs a permutation."""
    for dtype in (tf.int32, tf.int64, tf.float32, tf.float64):
      identity_permutation = tf.range(10, dtype=dtype)
      random_shuffle_seed_1 = tff_rnd.stateless_random_shuffle(
          identity_permutation, seed=tf.constant((1, 42), tf.int64))
      random_shuffle_seed_2 = tff_rnd.stateless_random_shuffle(
          identity_permutation, seed=tf.constant((2, 42), tf.int64))
      # Check that the shuffles are of the correct dtype
      for shuffle in (random_shuffle_seed_1, random_shuffle_seed_2):
        np.testing.assert_equal(shuffle.dtype, dtype.as_numpy_dtype)
      random_shuffle_seed_1 = self.evaluate(random_shuffle_seed_1)
      random_shuffle_seed_2 = self.evaluate(random_shuffle_seed_2)
      identity_permutation = self.evaluate(identity_permutation)
      # Check that the shuffles are different
      self.assertTrue(
          np.abs(random_shuffle_seed_1 - random_shuffle_seed_2).max())
      # Check that the shuffles are indeed permutations
      for shuffle in (random_shuffle_seed_1, random_shuffle_seed_2):
        self.assertAllEqual(set(shuffle), set(identity_permutation)) 
开发者ID:google,项目名称:tf-quant-finance,代码行数:22,代码来源:stateless_test.py

示例10: testOutputIsIndependentOfInputValues

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import int64 [as 别名]
def testOutputIsIndependentOfInputValues(self):
    """stateless_random_shuffle output is independent of input_tensor values."""
    # Generate sorted array of random numbers to control that the result
    # is independent of `input_tesnor` values
    np.random.seed(25)
    random_input = np.random.normal(size=[10])
    random_input.sort()
    for dtype in (tf.int32, tf.int64, tf.float32, tf.float64):
      # Permutation of a sequence [0, 1, .., 9]
      random_permutation = tff_rnd.stateless_random_shuffle(
          tf.range(10, dtype=dtype), seed=(100, 42))
      random_permutation = self.evaluate(random_permutation)
      # Shuffle `random_input` with the same seed
      random_shuffle_control = tff_rnd.stateless_random_shuffle(
          random_input, seed=(100, 42))
      random_shuffle_control = self.evaluate(random_shuffle_control)
      # Checks that the generated permutation does not depend on the underlying
      # values
      np.testing.assert_array_equal(
          np.argsort(random_permutation), np.argsort(random_shuffle_control)) 
开发者ID:google,项目名称:tf-quant-finance,代码行数:22,代码来源:stateless_test.py

示例11: testOutputIsStatelessSession

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import int64 [as 别名]
def testOutputIsStatelessSession(self):
    """Checks that stateless_random_shuffle is stateless across Sessions."""
    random_permutation_next_call = None
    for dtype in (tf.int32, tf.int64, tf.float32, tf.float64):
      random_permutation = tff_rnd.stateless_random_shuffle(
          tf.range(10, dtype=dtype), seed=tf.constant((100, 42), tf.int64))
      with tf.compat.v1.Session() as sess:
        random_permutation_first_call = sess.run(random_permutation)
      if random_permutation_next_call is not None:
        # Checks that the values are the same across different dtypes
        np.testing.assert_array_equal(random_permutation_first_call,
                                      random_permutation_next_call)
      with tf.compat.v1.Session() as sess:
        random_permutation_next_call = sess.run(random_permutation)
      np.testing.assert_array_equal(random_permutation_first_call,
                                    random_permutation_next_call) 
开发者ID:google,项目名称:tf-quant-finance,代码行数:18,代码来源:stateless_test.py

示例12: testMultiDimensionalShape

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import int64 [as 别名]
def testMultiDimensionalShape(self):
    """Check that stateless_random_shuffle works with multi-dim shapes."""
    for dtype in (tf.int32, tf.int64, tf.float32, tf.float64):
      input_permutation = tf.constant([[[1], [2], [3]], [[4], [5], [6]]],
                                      dtype=dtype)
      random_shuffle = tff_rnd.stateless_random_shuffle(
          input_permutation, seed=(1, 42))
      random_permutation_first_call = self.evaluate(random_shuffle)
      random_permutation_next_call = self.evaluate(random_shuffle)
      input_permutation = self.evaluate(input_permutation)
      # Check that the dtype is correct
      np.testing.assert_equal(random_permutation_first_call.dtype,
                              dtype.as_numpy_dtype)
      # Check that the shuffles are the same
      np.testing.assert_array_equal(random_permutation_first_call,
                                    random_permutation_next_call)
      # Check that the output shape is correct
      np.testing.assert_equal(random_permutation_first_call.shape,
                              input_permutation.shape) 
开发者ID:google,项目名称:tf-quant-finance,代码行数:21,代码来源:stateless_test.py

示例13: _info

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import int64 [as 别名]
def _info(self):
    return tfds.core.DatasetInfo(
        builder=self,
        description=_DESCRIPTION,
        features=tfds.features.FeaturesDict({
            "image":
                tfds.features.Image(shape=(105, 105, 3), encoding_format="png"),
            "alphabet":
                tfds.features.ClassLabel(num_classes=_NUM_ALPHABETS),
            "alphabet_char_id":
                tf.int64,
            "label":
                tfds.features.ClassLabel(num_classes=_NUM_CLASSES),
        }),
        supervised_keys=("image", "label"),
        homepage=_BASE_URL,
        citation=_CITATION,
    ) 
开发者ID:tensorflow,项目名称:datasets,代码行数:20,代码来源:omniglot.py

示例14: _parse_single_image

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import int64 [as 别名]
def _parse_single_image(self, example_proto):
    """Parses single video from the input tfrecords.

    Args:
      example_proto: tfExample proto with a single video.

    Returns:
      dict with all frames, positions and actions.
    """

    feature_map = {
        "image": tf.io.FixedLenFeature(shape=[], dtype=tf.string),
        "filename": tf.io.FixedLenFeature(shape=[], dtype=tf.string),
        "label": tf.io.FixedLenFeature(shape=[], dtype=tf.int64),
    }

    parse_single = tf.io.parse_single_example(example_proto, feature_map)

    return parse_single 
开发者ID:tensorflow,项目名称:datasets,代码行数:21,代码来源:dmlab.py

示例15: _info

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import int64 [as 别名]
def _info(self):
    return tfds.core.DatasetInfo(
        builder=self,
        description="Dataset with images from 5 classes (see config name for "
        "information on the specific class)",
        features=tfds.features.FeaturesDict({
            "image": tfds.features.Image(),
            "image/filename": tfds.features.Text(),
            "PetID": tfds.features.Text(),
            "attributes": {name: tf.int64 for name in _INT_FEATS},
            "label": tfds.features.ClassLabel(num_classes=5),
        }),
        supervised_keys=("attributes", "label"),
        homepage="https://www.kaggle.com/c/petfinder-adoption-prediction/data",
        citation=_CITATION,
    ) 
开发者ID:tensorflow,项目名称:datasets,代码行数:18,代码来源:pet_finder.py


注:本文中的tensorflow.compat.v2.int64方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。