当前位置: 首页>>代码示例>>Python>>正文


Python v2.int32方法代码示例

本文整理汇总了Python中tensorflow.compat.v2.int32方法的典型用法代码示例。如果您正苦于以下问题:Python v2.int32方法的具体用法?Python v2.int32怎么用?Python v2.int32使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.compat.v2的用法示例。


在下文中一共展示了v2.int32方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: compute_logits

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import int32 [as 别名]
def compute_logits(self, token_ids: tf.Tensor, training: bool) -> tf.Tensor:
        """
        Implements a language model, where each output is conditional on the current
        input and inputs processed so far.

        Args:
            token_ids: int32 tensor of shape [B, T], storing integer IDs of tokens.
            training: Flag indicating if we are currently training (used to toggle dropout)

        Returns:
            tf.float32 tensor of shape [B, T, V], storing the distribution over output symbols
            for each timestep for each batch element.
        """
        # TODO 5# 1) Embed tokens
        # TODO 5# 2) Run RNN on embedded tokens
        # TODO 5# 3) Project RNN outputs onto the vocabulary to obtain logits.
        return rnn_output_logits 
开发者ID:microsoft,项目名称:machine-learning-for-programming-samples,代码行数:19,代码来源:model_tf2.py

示例2: _key2seed

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import int32 [as 别名]
def _key2seed(a):
  """Converts an RNG key to an RNG seed.

  Args:
    a: an RNG key, an ndarray of shape [] and dtype `np.int64`.

  Returns:
    an RNG seed, a tensor of shape [2] and dtype `tf.int32`.
  """

  def int64_to_int32s(a):
    """Converts an int64 tensor of shape [] to an int32 tensor of shape [2]."""
    a = tf.cast(a, tf.uint64)
    fst = tf.cast(a, tf.uint32)
    snd = tf.cast(
        tf.bitwise.right_shift(a, tf.constant(32, tf.uint64)), tf.uint32)
    a = [fst, snd]
    a = tf.nest.map_structure(lambda x: tf.cast(x, tf.int32), a)
    a = tf.stack(a)
    return a

  return int64_to_int32s(a.data) 
开发者ID:google,项目名称:trax,代码行数:24,代码来源:extensions.py

示例3: _seed2key

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import int32 [as 别名]
def _seed2key(a):
  """Converts an RNG seed to an RNG key.

  Args:
    a: an RNG seed, a tensor of shape [2] and dtype `tf.int32`.

  Returns:
    an RNG key, an ndarray of shape [] and dtype `np.int64`.
  """

  def int32s_to_int64(a):
    """Converts an int32 tensor of shape [2] to an int64 tensor of shape []."""
    a = tf.bitwise.bitwise_or(
        tf.cast(a[0], tf.uint64),
        tf.bitwise.left_shift(
            tf.cast(a[1], tf.uint64), tf.constant(32, tf.uint64)))
    a = tf.cast(a, tf.int64)
    return a

  return tf_np.asarray(int32s_to_int64(a)) 
开发者ID:google,项目名称:trax,代码行数:22,代码来源:extensions.py

示例4: true_divide

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import int32 [as 别名]
def true_divide(x1, x2):
  def _avoid_float64(x1, x2):
    if x1.dtype == x2.dtype and x1.dtype in (tf.int32, tf.int64):
      x1 = tf.cast(x1, dtype=tf.float32)
      x2 = tf.cast(x2, dtype=tf.float32)
    return x1, x2

  def f(x1, x2):
    if x1.dtype == tf.bool:
      assert x2.dtype == tf.bool
      float_ = dtypes.default_float_type()
      x1 = tf.cast(x1, float_)
      x2 = tf.cast(x2, float_)
    if not dtypes.is_allow_float64():
      # tf.math.truediv in Python3 produces float64 when both inputs are int32
      # or int64. We want to avoid that when is_allow_float64() is False.
      x1, x2 = _avoid_float64(x1, x2)
    return tf.math.truediv(x1, x2)
  return _bin_op(f, x1, x2) 
开发者ID:google,项目名称:trax,代码行数:21,代码来源:math_ops.py

示例5: setUp

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import int32 [as 别名]
def setUp(self):
    super(LogicTest, self).setUp()
    self.array_transforms = [
        lambda x: x,  # Identity,
        tf.convert_to_tensor,
        np.array,
        lambda x: np.array(x, dtype=np.int32),
        lambda x: np.array(x, dtype=np.int64),
        lambda x: np.array(x, dtype=np.float32),
        lambda x: np.array(x, dtype=np.float64),
        array_ops.array,
        lambda x: array_ops.array(x, dtype=tf.int32),
        lambda x: array_ops.array(x, dtype=tf.int64),
        lambda x: array_ops.array(x, dtype=tf.float32),
        lambda x: array_ops.array(x, dtype=tf.float64),
    ] 
开发者ID:google,项目名称:trax,代码行数:18,代码来源:logic_test.py

示例6: __init__

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import int32 [as 别名]
def __init__(self,
               example_feature_columns,
               size_feature_name,
               name='generate_mask_layer',
               **kwargs):
    """Constructs a mask generator layer.

    Args:
      example_feature_columns: (dict) example feature names to columns.
      size_feature_name: (str) Name of feature for example list sizes. If not
        None, this feature name corresponds to a `tf.int32` Tensor of size
        [batch_size] corresponding to sizes of example lists. If `None`, all
        examples are treated as valid.
      name: (str) name of the layer.
      **kwargs: keyword arguments.
    """
    super(GenerateMask, self).__init__(name=name, **kwargs)
    self._example_feature_columns = example_feature_columns
    self._size_feature_name = size_feature_name 
开发者ID:tensorflow,项目名称:ranking,代码行数:21,代码来源:feature.py

示例7: testOutputIsPermutation

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import int32 [as 别名]
def testOutputIsPermutation(self):
    """Checks that stateless_random_shuffle outputs a permutation."""
    for dtype in (tf.int32, tf.int64, tf.float32, tf.float64):
      identity_permutation = tf.range(10, dtype=dtype)
      random_shuffle_seed_1 = tff_rnd.stateless_random_shuffle(
          identity_permutation, seed=tf.constant((1, 42), tf.int64))
      random_shuffle_seed_2 = tff_rnd.stateless_random_shuffle(
          identity_permutation, seed=tf.constant((2, 42), tf.int64))
      # Check that the shuffles are of the correct dtype
      for shuffle in (random_shuffle_seed_1, random_shuffle_seed_2):
        np.testing.assert_equal(shuffle.dtype, dtype.as_numpy_dtype)
      random_shuffle_seed_1 = self.evaluate(random_shuffle_seed_1)
      random_shuffle_seed_2 = self.evaluate(random_shuffle_seed_2)
      identity_permutation = self.evaluate(identity_permutation)
      # Check that the shuffles are different
      self.assertTrue(
          np.abs(random_shuffle_seed_1 - random_shuffle_seed_2).max())
      # Check that the shuffles are indeed permutations
      for shuffle in (random_shuffle_seed_1, random_shuffle_seed_2):
        self.assertAllEqual(set(shuffle), set(identity_permutation)) 
开发者ID:google,项目名称:tf-quant-finance,代码行数:22,代码来源:stateless_test.py

示例8: testOutputIsIndependentOfInputValues

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import int32 [as 别名]
def testOutputIsIndependentOfInputValues(self):
    """stateless_random_shuffle output is independent of input_tensor values."""
    # Generate sorted array of random numbers to control that the result
    # is independent of `input_tesnor` values
    np.random.seed(25)
    random_input = np.random.normal(size=[10])
    random_input.sort()
    for dtype in (tf.int32, tf.int64, tf.float32, tf.float64):
      # Permutation of a sequence [0, 1, .., 9]
      random_permutation = tff_rnd.stateless_random_shuffle(
          tf.range(10, dtype=dtype), seed=(100, 42))
      random_permutation = self.evaluate(random_permutation)
      # Shuffle `random_input` with the same seed
      random_shuffle_control = tff_rnd.stateless_random_shuffle(
          random_input, seed=(100, 42))
      random_shuffle_control = self.evaluate(random_shuffle_control)
      # Checks that the generated permutation does not depend on the underlying
      # values
      np.testing.assert_array_equal(
          np.argsort(random_permutation), np.argsort(random_shuffle_control)) 
开发者ID:google,项目名称:tf-quant-finance,代码行数:22,代码来源:stateless_test.py

示例9: testOutputIsStatelessSession

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import int32 [as 别名]
def testOutputIsStatelessSession(self):
    """Checks that stateless_random_shuffle is stateless across Sessions."""
    random_permutation_next_call = None
    for dtype in (tf.int32, tf.int64, tf.float32, tf.float64):
      random_permutation = tff_rnd.stateless_random_shuffle(
          tf.range(10, dtype=dtype), seed=tf.constant((100, 42), tf.int64))
      with tf.compat.v1.Session() as sess:
        random_permutation_first_call = sess.run(random_permutation)
      if random_permutation_next_call is not None:
        # Checks that the values are the same across different dtypes
        np.testing.assert_array_equal(random_permutation_first_call,
                                      random_permutation_next_call)
      with tf.compat.v1.Session() as sess:
        random_permutation_next_call = sess.run(random_permutation)
      np.testing.assert_array_equal(random_permutation_first_call,
                                    random_permutation_next_call) 
开发者ID:google,项目名称:tf-quant-finance,代码行数:18,代码来源:stateless_test.py

示例10: testMultiDimensionalShape

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import int32 [as 别名]
def testMultiDimensionalShape(self):
    """Check that stateless_random_shuffle works with multi-dim shapes."""
    for dtype in (tf.int32, tf.int64, tf.float32, tf.float64):
      input_permutation = tf.constant([[[1], [2], [3]], [[4], [5], [6]]],
                                      dtype=dtype)
      random_shuffle = tff_rnd.stateless_random_shuffle(
          input_permutation, seed=(1, 42))
      random_permutation_first_call = self.evaluate(random_shuffle)
      random_permutation_next_call = self.evaluate(random_shuffle)
      input_permutation = self.evaluate(input_permutation)
      # Check that the dtype is correct
      np.testing.assert_equal(random_permutation_first_call.dtype,
                              dtype.as_numpy_dtype)
      # Check that the shuffles are the same
      np.testing.assert_array_equal(random_permutation_first_call,
                                    random_permutation_next_call)
      # Check that the output shape is correct
      np.testing.assert_equal(random_permutation_first_call.shape,
                              input_permutation.shape) 
开发者ID:google,项目名称:tf-quant-finance,代码行数:21,代码来源:stateless_test.py

示例11: testFindsAllRootsUsingFloat16

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import int32 [as 别名]
def testFindsAllRootsUsingFloat16(self):
    left_bracket = [-2, 1]
    right_bracket = [2, -1]
    expected_num_iterations = [9, 4]

    expected_num_iterations, result = self.evaluate([
        tf.constant(expected_num_iterations, dtype=tf.int32),
        root_search.brentq(polynomial5,
                           tf.constant(left_bracket, dtype=tf.float16),
                           tf.constant(right_bracket, dtype=tf.float16))
    ])

    _, value_at_roots, num_iterations, _ = result

    # Simply check that the objective function is close to the root for the
    # returned estimates. Do not check the estimates themselves.
    # Using float16 may yield root estimates which differ from those returned
    # by the SciPy implementation.
    self.assertAllClose(value_at_roots, [0., 0.], atol=1e-3)
    self.assertAllEqual(num_iterations, expected_num_iterations) 
开发者ID:google,项目名称:tf-quant-finance,代码行数:22,代码来源:root_search_test.py

示例12: testFindsRootForFlatFunction

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import int32 [as 别名]
def testFindsRootForFlatFunction(self):
    # Flat in the [-0.5, 0.5] range.
    objective_fn = lambda x: 0 if x == 0 else x * exp(-1 / x**2)

    left_bracket = [-10]
    right_bracket = [1]
    expected_num_iterations = [13]

    expected_num_iterations, result = self.evaluate([
        tf.constant(expected_num_iterations, dtype=tf.int32),
        root_search.brentq(objective_fn,
                           tf.constant(left_bracket, dtype=tf.float64),
                           tf.constant(right_bracket, dtype=tf.float64))
    ])

    _, value_at_roots, num_iterations, _ = result

    # Simply check that the objective function is close to the root for the
    # returned estimate. Do not check the estimate itself.
    # Unlike Brent's original algorithm (and the SciPy implementation), this
    # implementation stops the search as soon as a good enough root estimate is
    # found. As a result, the estimate may significantly differ from the one
    # returned by SciPy for functions which are extremely flat around the root.
    self.assertAllClose(value_at_roots, [0.])
    self.assertAllEqual(num_iterations, expected_num_iterations) 
开发者ID:google,项目名称:tf-quant-finance,代码行数:27,代码来源:root_search_test.py

示例13: test_sobol_numbers_generation

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import int32 [as 别名]
def test_sobol_numbers_generation(self, dtype):
    """Sobol random dtype results in the correct draws."""
    num_draws = tf.constant(2, dtype=tf.int32)
    steps_num = tf.constant(3, dtype=tf.int32)
    num_samples = tf.constant(4, dtype=tf.int32)
    random_type = tff.math.random.RandomType.SOBOL
    skip = 10
    samples = utils.generate_mc_normal_draws(
        num_normal_draws=num_draws, num_time_steps=steps_num,
        num_sample_paths=num_samples, random_type=random_type,
        dtype=dtype, skip=skip)
    expected_samples = [[[0.8871465, 0.48877636],
                         [-0.8871465, -0.48877636],
                         [0.48877636, 0.8871465],
                         [-0.15731068, 0.15731068]],
                        [[0.8871465, -1.5341204],
                         [1.5341204, -0.15731068],
                         [-0.15731068, 1.5341204],
                         [-0.8871465, 0.48877636]],
                        [[-0.15731068, 1.5341204],
                         [0.15731068, -0.48877636],
                         [-1.5341204, 0.8871465],
                         [0.8871465, -1.5341204]]]
    self.assertAllClose(samples, expected_samples, rtol=1e-5, atol=1e-5) 
开发者ID:google,项目名称:tf-quant-finance,代码行数:26,代码来源:utils_test.py

示例14: _euler_step

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import int32 [as 别名]
def _euler_step(*, i, written_count, current_state, result,
                drift_fn, volatility_fn, wiener_mean,
                num_samples, times, dt, sqrt_dt, keep_mask,
                random_type, seed, normal_draws):
  """Performs one step of Euler scheme."""
  current_time = times[i + 1]
  written_count = tf.cast(written_count, tf.int32)
  if normal_draws is not None:
    dw = normal_draws[i]
  else:
    dw = random.mv_normal_sample(
        (num_samples,), mean=wiener_mean, random_type=random_type,
        seed=seed)
  dw = dw * sqrt_dt[i]
  dt_inc = dt[i] * drift_fn(current_time, current_state)  # pylint: disable=not-callable
  dw_inc = tf.linalg.matvec(volatility_fn(current_time, current_state), dw)  # pylint: disable=not-callable
  next_state = current_state + dt_inc + dw_inc
  result = utils.maybe_update_along_axis(
      tensor=result,
      do_update=keep_mask[i + 1],
      ind=written_count,
      axis=1,
      new_tensor=tf.expand_dims(next_state, axis=1))
  written_count += tf.cast(keep_mask[i + 1], dtype=tf.int32)
  return i + 1, written_count, next_state, result 
开发者ID:google,项目名称:tf-quant-finance,代码行数:27,代码来源:euler_sampling.py

示例15: business_days_in_period

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import int32 [as 别名]
def business_days_in_period(self, date_tensor, period_tensor):
    """Calculates number of business days in a period.

    Includes the dates in `date_tensor`, but excludes final dates resulting from
    addition of `period_tensor`.

    Args:
      date_tensor: DateTensor of starting dates.
      period_tensor: PeriodTensor, should be broadcastable to `date_tensor`.

    Returns:
       An int32 Tensor with the number of business days in given periods that
       start at given dates.

    """
    return self.business_days_between(date_tensor, date_tensor + period_tensor) 
开发者ID:google,项目名称:tf-quant-finance,代码行数:18,代码来源:bounded_holiday_calendar.py


注:本文中的tensorflow.compat.v2.int32方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。