当前位置: 首页>>代码示例>>Python>>正文


Python v2.identity方法代码示例

本文整理汇总了Python中tensorflow.compat.v2.identity方法的典型用法代码示例。如果您正苦于以下问题:Python v2.identity方法的具体用法?Python v2.identity怎么用?Python v2.identity使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.compat.v2的用法示例。


在下文中一共展示了v2.identity方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: identity

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import identity [as 别名]
def identity(n, dtype=float):
  """Returns a square array with ones on the main diagonal and zeros elsewhere.

  Args:
    n: number of rows/cols.
    dtype: Optional, defaults to float. The type of the resulting ndarray. Could
      be a python type, a NumPy type or a TensorFlow `DType`.

  Returns:
    An ndarray of shape (n, n) and requested type.
  """
  return eye(N=n, M=n, dtype=dtype) 
开发者ID:google,项目名称:trax,代码行数:14,代码来源:array_ops.py

示例2: ndarray_to_tensor

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import identity [as 别名]
def ndarray_to_tensor(arr, dtype=None, name=None, as_ref=False):
  if as_ref:
    raise ValueError('as_ref is not supported.')
  if dtype and tf.as_dtype(arr.dtype) != dtype:
    return tf.cast(arr.data, dtype)
  result_t = arr.data
  if name:
    result_t = tf.identity(result_t, name=name)
  return result_t 
开发者ID:google,项目名称:trax,代码行数:11,代码来源:arrays.py

示例3: _make_tower_layers

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import identity [as 别名]
def _make_tower_layers(hidden_layer_dims,
                       output_units,
                       activation=None,
                       use_batch_norm=True,
                       batch_norm_moment=0.999,
                       dropout=0.5):
  """Defines tower using keras layers.

  Args:
   hidden_layer_dims: Iterable of number hidden units per layer.
     All layers are fully connected. Ex. `[64, 32]` means first layer has 64
     nodes and second one has 32.
   output_units: (int) Size of output logits from this tower.
   activation: Activation function applied to each layer. If `None`, will use
        an identity activation, which is default behavior in Keras activations.
   use_batch_norm: Whether to use batch normalization after each hidden layer.
   batch_norm_moment: Momentum for the moving average in batch normalization.
   dropout: When not `None`, the probability we will drop out a given
      coordinate.

  Returns:
    A list of Keras layers for this tower.
  """
  layers = []
  if not hidden_layer_dims:
    return layers
  if use_batch_norm:
    layers.append(
        tf.keras.layers.BatchNormalization(momentum=batch_norm_moment))
  for layer_width in hidden_layer_dims:
    layers.append(tf.keras.layers.Dense(units=layer_width))
    if use_batch_norm:
      layers.append(
          tf.keras.layers.BatchNormalization(momentum=batch_norm_moment))
    layers.append(tf.keras.layers.Activation(activation=activation))
    if dropout:
      layers.append(tf.keras.layers.Dropout(rate=dropout))
  layers.append(tf.keras.layers.Dense(units=output_units))
  return layers 
开发者ID:tensorflow,项目名称:ranking,代码行数:41,代码来源:gam.py

示例4: identity

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import identity [as 别名]
def identity(self):
    """See tf.identity."""
    return self._apply_op(tf.identity) 
开发者ID:google,项目名称:tf-quant-finance,代码行数:5,代码来源:tensor_wrapper.py

示例5: from_ordinals

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import identity [as 别名]
def from_ordinals(ordinals, validate=True):
  """Creates DateTensor from tensors of ordinals.

  Args:
    ordinals: Tensor of type int32. Each value is number of days since 1 Jan
      0001. 1 Jan 0001 has `ordinal=1`.
    validate: Whether to validate the dates.

  Returns:
    DateTensor object.

  #### Example

  ```python
  ordinals = tf.constant([
    735703,  # 2015-4-12
    736693   # 2017-12-30
  ], dtype=tf.int32)

  date_tensor = tff.datetime.dates_from_ordinals(ordinals)
  ```
  """
  ordinals = tf.convert_to_tensor(ordinals, dtype=tf.int32)

  control_deps = []
  if validate:
    control_deps.append(
        tf.debugging.assert_positive(
            ordinals, message="Ordinals must be positive."))
    with tf.compat.v1.control_dependencies(control_deps):
      ordinals = tf.identity(ordinals)

  with tf.compat.v1.control_dependencies(control_deps):
    years, months, days = date_utils.ordinal_to_year_month_day(ordinals)
    return DateTensor(ordinals, years, months, days) 
开发者ID:google,项目名称:tf-quant-finance,代码行数:37,代码来源:date_tensor.py

示例6: grad_reverse

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import identity [as 别名]
def grad_reverse(x):
  y = tf.identity(x)

  def custom_grad(dy):
    return -dy * _LAMBDA_VAL

  return y, custom_grad 
开发者ID:google-research,项目名称:valan,代码行数:9,代码来源:mt_agent.py

示例7: preprocess

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import identity [as 别名]
def preprocess(self, inputs):
    true_image_shapes = []  # Doesn't matter for the fake model.
    return tf.identity(inputs), true_image_shapes 
开发者ID:tensorflow,项目名称:models,代码行数:5,代码来源:exporter_lib_tf2_test.py

示例8: array

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import identity [as 别名]
def array(val, dtype=None, copy=True, ndmin=0):  # pylint: disable=redefined-outer-name
  """Creates an ndarray with the contents of val.

  Args:
    val: array_like. Could be an ndarray, a Tensor or any object that can be
      converted to a Tensor using `tf.convert_to_tensor`.
    dtype: Optional, defaults to dtype of the `val`. The type of the resulting
      ndarray. Could be a python type, a NumPy type or a TensorFlow `DType`.
    copy: Determines whether to create a copy of the backing buffer. Since
      Tensors are immutable, a copy is made only if val is placed on a different
      device than the current one. Even if `copy` is False, a new Tensor may
      need to be built to satisfy `dtype` and `ndim`. This is used only if `val`
      is an ndarray or a Tensor.
    ndmin: The minimum rank of the returned array.

  Returns:
    An ndarray.
  """
  if dtype:
    dtype = utils.result_type(dtype)
  if isinstance(val, arrays_lib.ndarray):
    result_t = val.data
  else:
    result_t = val

  if copy and isinstance(result_t, tf.Tensor):
    # Note: In eager mode, a copy of `result_t` is made only if it is not on
    # the context device.
    result_t = tf.identity(result_t)

  if not isinstance(result_t, tf.Tensor):
    if not dtype:
      dtype = utils.result_type(result_t)
    # We can't call `convert_to_tensor(result_t, dtype=dtype)` here because
    # convert_to_tensor doesn't allow incompatible arguments such as (5.5, int)
    # while np.array allows them. We need to convert-then-cast.
    def maybe_data(x):
      if isinstance(x, arrays_lib.ndarray):
        return x.data
      return x

    # Handles lists of ndarrays
    result_t = tf.nest.map_structure(maybe_data, result_t)
    result_t = arrays_lib.convert_to_tensor(result_t)
    result_t = tf.cast(result_t, dtype=dtype)
  elif dtype:
    result_t = tf.cast(result_t, dtype)
  ndims = tf.rank(result_t)

  def true_fn():
    old_shape = tf.shape(result_t)
    new_shape = tf.concat([tf.ones(ndmin - ndims, tf.int32), old_shape], axis=0)
    return tf.reshape(result_t, new_shape)

  result_t = utils.cond(utils.greater(ndmin, ndims), true_fn, lambda: result_t)
  return arrays_lib.tensor_to_ndarray(result_t) 
开发者ID:google,项目名称:trax,代码行数:58,代码来源:array_ops.py

示例9: from_year_month_day

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import identity [as 别名]
def from_year_month_day(year, month, day, validate=True):
  """Creates DateTensor from tensors of years, months and days.

  Args:
    year: Tensor of int32 type. Elements should be positive.
    month: Tensor of int32 type of same shape as `year`. Elements should be in
      range `[1, 12]`.
    day: Tensor of int32 type of same shape as `year`. Elements should be in
      range `[1, 31]` and represent valid dates together with corresponding
      elements of `month` and `year` Tensors.
    validate: Whether to validate the dates.

  Returns:
    DateTensor object.

  #### Example

  ```python
  year = tf.constant([2015, 2017], dtype=tf.int32)
  month = tf.constant([4, 12], dtype=tf.int32)
  day = tf.constant([15, 30], dtype=tf.int32)
  date_tensor = tff.datetime.dates_from_year_month_day(year, month, day)
  ```
  """
  year = tf.convert_to_tensor(year, tf.int32)
  month = tf.convert_to_tensor(month, tf.int32)
  day = tf.convert_to_tensor(day, tf.int32)

  control_deps = []
  if validate:
    control_deps.append(
        tf.debugging.assert_positive(year, message="Year must be positive."))
    control_deps.append(
        tf.debugging.assert_greater_equal(
            month,
            constants.Month.JANUARY.value,
            message=f"Month must be >= {constants.Month.JANUARY.value}"))
    control_deps.append(
        tf.debugging.assert_less_equal(
            month,
            constants.Month.DECEMBER.value,
            message="Month must be <= {constants.Month.JANUARY.value}"))
    control_deps.append(
        tf.debugging.assert_positive(day, message="Day must be positive."))
    is_leap = date_utils.is_leap_year(year)
    days_in_months = tf.constant(_DAYS_IN_MONTHS_COMBINED, tf.int32)
    max_days = tf.gather(days_in_months,
                         month + 12 * tf.dtypes.cast(is_leap, np.int32))
    control_deps.append(
        tf.debugging.assert_less_equal(
            day, max_days, message="Invalid day-month pairing."))
    with tf.compat.v1.control_dependencies(control_deps):
      # Ensure years, months, days themselves are under control_deps.
      year = tf.identity(year)
      month = tf.identity(month)
      day = tf.identity(day)

  with tf.compat.v1.control_dependencies(control_deps):
    ordinal = date_utils.year_month_day_to_ordinal(year, month, day)
    return DateTensor(ordinal, year, month, day) 
开发者ID:google,项目名称:tf-quant-finance,代码行数:62,代码来源:date_tensor.py


注:本文中的tensorflow.compat.v2.identity方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。