本文整理汇总了Python中tensorflow.compat.v2.gather_nd方法的典型用法代码示例。如果您正苦于以下问题:Python v2.gather_nd方法的具体用法?Python v2.gather_nd怎么用?Python v2.gather_nd使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.compat.v2
的用法示例。
在下文中一共展示了v2.gather_nd方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: labels_of_top_ranked_predictions_in_batch
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import gather_nd [as 别名]
def labels_of_top_ranked_predictions_in_batch(labels, predictions):
"""Applying tf.metrics.mean to this gives precision at 1.
Args:
labels: minibatch of dense 0/1 labels, shape [batch_size rows, num_classes]
predictions: minibatch of predictions of the same shape
Returns:
one-dimension tensor top_labels, where top_labels[i]=1.0 iff the
top-scoring prediction for batch element i has label 1.0
"""
indices_of_top_preds = tf.cast(tf.argmax(input=predictions, axis=1), tf.int32)
batch_size = tf.reduce_sum(input_tensor=tf.ones_like(indices_of_top_preds))
row_indices = tf.range(batch_size)
thresholded_labels = tf.where(labels > 0.0, tf.ones_like(labels),
tf.zeros_like(labels))
label_indices_to_gather = tf.transpose(
a=tf.stack([row_indices, indices_of_top_preds]))
return tf.gather_nd(thresholded_labels, label_indices_to_gather)
示例2: _piecewise_constant_function
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import gather_nd [as 别名]
def _piecewise_constant_function(x, jump_locations, values,
batch_rank, side='left'):
"""Computes value of the piecewise constant function."""
# Initializer already verified that `jump_locations` and `values` have the
# same shape
batch_shape = jump_locations.shape.as_list()[:-1]
# Check that the batch shape of `x` is the same as of `jump_locations` and
# `values`
batch_shape_x = x.shape.as_list()[:batch_rank]
if batch_shape_x != batch_shape:
raise ValueError('Batch shape of `x` is {1} but should be {0}'.format(
batch_shape, batch_shape_x))
if x.shape.as_list()[:batch_rank]:
no_batch_shape = False
else:
no_batch_shape = True
x = tf.expand_dims(x, 0)
# Expand batch size to one if there is no batch shape
if not batch_shape:
jump_locations = tf.expand_dims(jump_locations, 0)
values = tf.expand_dims(values, 0)
indices = tf.searchsorted(jump_locations, x, side=side)
index_matrix = _prepare_index_matrix(
indices.shape.as_list()[:-1], indices.shape.as_list()[-1], indices.dtype)
indices_nd = tf.concat(
[index_matrix, tf.expand_dims(indices, -1)], -1)
res = tf.gather_nd(values, indices_nd)
if no_batch_shape:
return tf.squeeze(res, 0)
else:
return res
示例3: _prepare_index_matrix
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import gather_nd [as 别名]
def _prepare_index_matrix(batch_shape, num_points, dtype):
"""Prepares index matrix for index argument of `tf.gather_nd`."""
batch_shape_reverse = batch_shape.copy()
batch_shape_reverse.reverse()
index_matrix = tf.constant(
np.flip(np.transpose(np.indices(batch_shape_reverse)), -1),
dtype=dtype)
batch_rank = len(batch_shape)
# Broadcast index matrix to the shape of
# `batch_shape + [num_points] + [batch_rank]`.
broadcasted_shape = batch_shape + [num_points] + [batch_rank]
index_matrix = tf.expand_dims(index_matrix, -2) + tf.zeros(
tf.TensorShape(broadcasted_shape), dtype=dtype)
return index_matrix
示例4: prepare_indices
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import gather_nd [as 别名]
def prepare_indices(indices):
"""Prepares `tf.searchsorted` output for index argument of `tf.gather_nd`.
Creates an index matrix that can be used along with `tf.gather_nd`.
#### Example
indices = tf.constant([[[1, 2], [2, 3]]])
index_matrix = utils.prepare_indices(indices)
# Outputs a tensor of shape [1, 2, 3, 2]
# [[[[0, 0], [0, 0], [0, 0]], [[0, 1], [0, 1], [0, 1]]]]
# The index matrix can be concatenated with the indices in order to obtain
# gather_nd selection matrix
tf.concat([index_matrix, tf.expand_dims(indices, axis=-1)], axis=-1)
# Outputs
# [[[[0, 0, 1], [0, 0, 2], [0, 0, 3]],
# [[0, 1, 2], [0, 1, 3], [0, 1, 4]]]]
Args:
indices: A `Tensor` of any shape and dtype.
Returns:
A `Tensor` of the same dtype as `indices` and shape
`indices.shape + [indices.shape.rank - 1]`.
"""
batch_shape = indices.shape.as_list()[:-1]
num_points = indices.shape.as_list()[-1]
batch_shape_reverse = indices.shape.as_list()[:-1]
batch_shape_reverse.reverse()
index_matrix = tf.constant(
np.flip(np.transpose(np.indices(batch_shape_reverse)), -1),
dtype=indices.dtype)
batch_rank = len(batch_shape)
# Broadcast index matrix to the shape of
# `batch_shape + [num_points] + [batch_rank]`
broadcasted_shape = batch_shape + [num_points] + [batch_rank]
index_matrix = tf.expand_dims(index_matrix, -2) + tf.zeros(
broadcasted_shape, dtype=indices.dtype)
return index_matrix
示例5: sort_key_val
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import gather_nd [as 别名]
def sort_key_val(keys, values, dimension=-1):
"""Sorts keys along a dimension and applies same permutation to values.
Args:
keys: an array. The dtype must be comparable numbers (integers and reals).
values: an array, with the same shape of `keys`.
dimension: an `int`. The dimension along which to sort.
Returns:
Permuted keys and values.
"""
keys = tf_np.asarray(keys)
values = tf_np.asarray(values)
rank = keys.data.shape.ndims
if rank is None:
rank = values.data.shape.ndims
if rank is None:
# We need to know the rank because tf.gather requires batch_dims to be `int`
raise ValueError("The rank of either keys or values must be known, but "
"both are unknown (i.e. their shapes are both None).")
if dimension in (-1, rank - 1):
def maybe_swapaxes(a):
return a
else:
def maybe_swapaxes(a):
return tf_np.swapaxes(a, dimension, -1)
# We need to swap axes because tf.gather (and tf.gather_nd) supports
# batch_dims on the left but not on the right.
# TODO(wangpeng): Investigate whether we should do swapaxes or moveaxis.
keys = maybe_swapaxes(keys)
values = maybe_swapaxes(values)
idxs = tf_np.argsort(keys)
idxs = idxs.data
# Using tf.gather rather than np.take because the former supports batch_dims
def gather(a):
return tf_np.asarray(tf.gather(a.data, idxs, batch_dims=rank - 1))
keys = gather(keys)
values = gather(values)
keys = maybe_swapaxes(keys)
values = maybe_swapaxes(values)
return keys, values
# Use int64 instead of int32 to avoid TF's "int32 problem"
示例6: compute_logits
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import gather_nd [as 别名]
def compute_logits(self,
context_features=None,
example_features=None,
training=None,
mask=None):
"""Scores context and examples to return a score per document.
Args:
context_features: (dict) context feature names to 2D tensors of shape
[batch_size, feature_dims].
example_features: (dict) example feature names to 3D tensors of shape
[batch_size, list_size, feature_dims].
training: (bool) whether in train or inference mode.
mask: (tf.Tensor) Mask is a tensor of shape [batch_size, list_size], which
is True for a valid example and False for invalid one. If mask is None,
all entries are valid.
Returns:
(tf.Tensor) A score tensor of shape [batch_size, list_size].
"""
tensor = next(six.itervalues(example_features))
batch_size = tf.shape(tensor)[0]
list_size = tf.shape(tensor)[1]
if mask is None:
mask = tf.ones(shape=[batch_size, list_size], dtype=tf.bool)
nd_indices, nd_mask = utils.padded_nd_indices(is_valid=mask)
# Expand query features to be of [batch_size, list_size, ...].
large_batch_context_features = {}
for name, tensor in six.iteritems(context_features):
x = tf.expand_dims(input=tensor, axis=1)
x = tf.gather(x, tf.zeros([list_size], tf.int32), axis=1)
large_batch_context_features[name] = utils.reshape_first_ndims(
x, 2, [batch_size * list_size])
large_batch_example_features = {}
for name, tensor in six.iteritems(example_features):
# Replace invalid example features with valid ones.
padded_tensor = tf.gather_nd(tensor, nd_indices)
large_batch_example_features[name] = utils.reshape_first_ndims(
padded_tensor, 2, [batch_size * list_size])
# Get scores for large batch.
scores = self.score(
context_features=large_batch_context_features,
example_features=large_batch_example_features,
training=training)
logits = tf.reshape(
scores, shape=[batch_size, list_size])
# Apply nd_mask to zero out invalid entries.
logits = tf.where(nd_mask, logits, tf.zeros_like(logits))
return logits
示例7: _piecewise_constant_integrate
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import gather_nd [as 别名]
def _piecewise_constant_integrate(x1, x2, jump_locations, values, batch_rank):
"""Integrates piecewise constant function between `x1` and `x2`."""
# Initializer already verified that `jump_locations` and `values` have the
# same shape.
# Expand batch size to one if there is no batch shape.
if x1.shape.as_list()[:batch_rank]:
no_batch_shape = False
else:
no_batch_shape = True
x1 = tf.expand_dims(x1, 0)
x2 = tf.expand_dims(x2, 0)
if not jump_locations.shape.as_list()[:-1]:
jump_locations = tf.expand_dims(jump_locations, 0)
values = tf.expand_dims(values, 0)
batch_rank += 1
# Compute the index matrix that is later used for `tf.gather_nd`.
index_matrix = _prepare_index_matrix(
x1.shape.as_list()[:-1], x1.shape.as_list()[-1], tf.int32)
# Compute integral values at the jump locations starting from the first jump
# location.
event_shape = values.shape[(batch_rank+1):]
num_data_points = values.shape.as_list()[batch_rank]
diff = jump_locations[..., 1:] - jump_locations[..., :-1]
# Broadcast `diff` to the shape of
# `batch_shape + [num_data_points - 2] + [1] * sample_rank`.
for _ in event_shape:
diff = tf.expand_dims(diff, -1)
slice_indices = batch_rank * [slice(None)]
slice_indices += [slice(1, num_data_points - 1)]
integrals = tf.cumsum(values[slice_indices] * diff, batch_rank)
# Pad integrals with zero values on left and right.
batch_shape = integrals.shape.as_list()[:batch_rank]
zeros = tf.zeros(batch_shape + [1] + event_shape, dtype=integrals.dtype)
integrals = tf.concat([zeros, integrals, zeros], axis=batch_rank)
# Get jump locations and values and the integration end points
value1, jump_location1, indices_nd1 = _get_indices_and_values(
x1, index_matrix, jump_locations, values, 'left', batch_rank)
value2, jump_location2, indices_nd2 = _get_indices_and_values(
x2, index_matrix, jump_locations, values, 'right', batch_rank)
integrals1 = tf.gather_nd(integrals, indices_nd1)
integrals2 = tf.gather_nd(integrals, indices_nd2)
# Broadcast `x1`, `x2`, `jump_location1`, `jump_location2` to the shape
# `batch_shape + [num_points] + [1] * sample_rank`.
for _ in event_shape:
x1 = tf.expand_dims(x1, -1)
x2 = tf.expand_dims(x2, -1)
jump_location1 = tf.expand_dims(jump_location1, -1)
jump_location2 = tf.expand_dims(jump_location2, -1)
# Compute the value of the integral.
res = ((jump_location1 - x1) * value1
+ (x2 - jump_location2) * value2
+ integrals2 - integrals1)
if no_batch_shape:
return tf.squeeze(res, 0)
else:
return res
示例8: _get_indices_and_values
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import gather_nd [as 别名]
def _get_indices_and_values(x, index_matrix, jump_locations, values, side,
batch_rank):
"""Computes values and jump locations of the piecewise constant function.
Given `jump_locations` and the `values` on the corresponding segments of the
piecewise constant function, the function identifies the nearest jump to `x`
from the right or left (which is determined by the `side` argument) and the
corresponding value of the piecewise constant function at `x`
Args:
x: A real `Tensor` of shape `batch_shape + [num_points]`. Points at which
the function has to be evaluated.
index_matrix: An `int32` `Tensor` of shape
`batch_shape + [num_points] + [len(batch_shape)]` such that if
`batch_shape = [i1, .., in]`, then for all `j1, ..., jn, l`,
`index_matrix[j1,..,jn, l] = [j1, ..., jn]`.
jump_locations: A `Tensor` of the same `dtype` as `x` and shape
`batch_shape + [num_jump_points]`. The locations where the function
changes its values. Note that the values are expected to be ordered
along the last dimension.
values: A `Tensor` of the same `dtype` as `x` and shape
`batch_shape + [num_jump_points + 1]`. Defines `values[..., i]` on
`jump_locations[..., i - 1], jump_locations[..., i]`.
side: A Python string. Whether the function is left- or right- continuous.
The corresponding values for side should be `left` and `right`.
batch_rank: A Python scalar stating the batch rank of `x`.
Returns:
A tuple of three `Tensor` of the same `dtype` as `x` and shapes
`batch_shape + [num_points] + event_shape`, `batch_shape + [num_points]`,
and `batch_shape + [num_points] + [2 * len(batch_shape)]`. The `Tensor`s
correspond to the values, jump locations at `x`, and the corresponding
indices used to obtain jump locations via `tf.gather_nd`.
"""
indices = tf.searchsorted(jump_locations, x, side=side)
num_data_points = tf.shape(values)[batch_rank] - 2
if side == 'right':
indices_jump = indices - 1
indices_jump = tf.maximum(indices_jump, 0)
else:
indices_jump = tf.minimum(indices, num_data_points)
indices_nd = tf.concat(
[index_matrix, tf.expand_dims(indices, -1)], -1)
indices_jump_nd = tf.concat(
[index_matrix, tf.expand_dims(indices_jump, -1)], -1)
value = tf.gather_nd(values, indices_nd)
jump_location = tf.gather_nd(jump_locations, indices_jump_nd)
return value, jump_location, indices_jump_nd
示例9: _get_reset_state
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import gather_nd [as 别名]
def _get_reset_state(self, observation, done, default_state):
"""Resets the state wherever marked in `done` tensor.
Consider the following example with num_timesteps=2, batch_size=3,
state_size=1:
default_state (batch_size, state_size) = [[5.], [5.], [5.]]
done (num_timesteps, batch_size) = [[True, True, False],
[False, True, False]]
observation (num_timesteps, batch_size, 1) = [[[1.], [2.], [3.]],
[[4.], [5.], [6.]]]
self.get_initial_state implements `observation + 10`.
then returned tensor will be of shape (num_timesteps, batch_size,
state_size) and its value will be:
[[[11.], [12.], [0.]],
[[0.], [15.], [0.]]]
where state values are replaced by call to `self.get_initial_state` wherever
done=True. Note that the state values where done=False are set to zeros and
are expected not to be used by the caller.
Args:
observation: A nested structure with individual tensors that have first
two dimensions equal to [num_timesteps, batch_size].
done: A boolean tensor of shape [num_timesteps, batch_size].
default_state: A tensor or nested structure with individual tensors that
have first dimension equal to batch_size and no time dimension.
Returns:
A structure similar to `default_state` except that all tensors in the
returned structure have an additional leading dimension equal to
num_timesteps.
"""
reset_indices = tf.compat.v1.where(tf.equal(done, True))
def _get_reset_state_indices():
reset_indices_obs = tf.nest.map_structure(
lambda t: tf.gather_nd(t, reset_indices), observation)
# shape: [num_indices_to_reset, ...]
reset_indices_state = self.get_initial_state(
reset_indices_obs, batch_size=tf.shape(reset_indices)[0])
# Scatter tensors in `reset_indices_state` to shape: [num_timesteps,
# batch_size, ...]
return tf.nest.map_structure(
lambda reset_tensor: tf.scatter_nd(
indices=reset_indices,
updates=reset_tensor,
shape=done.shape.as_list() + reset_tensor.shape.as_list()[1:]),
reset_indices_state)
# A minor optimization wherein if all elements in `done` are False, we
# simply return a structure with zeros tensors of correct shape.
return tf.cond(
tf.greater(tf.size(reset_indices), 0),
_get_reset_state_indices,
lambda: tf.nest.map_structure(
lambda t: tf.zeros(
shape=done.shape.as_list() + t.shape.as_list()[1:],
dtype=t.dtype),
default_state))