当前位置: 首页>>代码示例>>Python>>正文


Python v2.gather方法代码示例

本文整理汇总了Python中tensorflow.compat.v2.gather方法的典型用法代码示例。如果您正苦于以下问题:Python v2.gather方法的具体用法?Python v2.gather怎么用?Python v2.gather使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.compat.v2的用法示例。


在下文中一共展示了v2.gather方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: take

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import gather [as 别名]
def take(a, indices, axis=None, out=None, mode='clip'):
  """out argument is not supported, and default mode is clip."""
  if out is not None:
    raise ValueError('out argument is not supported in take.')

  if mode not in {'raise', 'clip', 'wrap'}:
    raise ValueError("Invalid mode '{}' for take".format(mode))

  a = asarray(a).data
  indices = asarray(indices).data

  if axis is None:
    a = tf.reshape(a, [-1])
    axis = 0

  axis_size = tf.shape(a, indices.dtype)[axis]
  if mode == 'clip':
    indices = tf.clip_by_value(indices, 0, axis_size-1)
  elif mode == 'wrap':
    indices = tf.math.floormod(indices, axis_size)
  else:
    raise ValueError("The 'raise' mode to take is not supported.")

  return utils.tensor_to_ndarray(tf.gather(a, indices, axis=axis)) 
开发者ID:google,项目名称:trax,代码行数:26,代码来源:array_ops.py

示例2: _compute_yt

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import gather [as 别名]
def _compute_yt(self, t, mr_t, sigma_t):
    """Computes y(t) as described in [1], section 10.1.6.1."""
    t = tf.repeat(tf.expand_dims(t, axis=0), self._dim, axis=0)
    time_index = tf.searchsorted(self._jump_locations, t)
    y_between_vol_knots = self._y_integral(
        self._padded_knots, self._jump_locations, self._jump_values_vol,
        self._jump_values_mr)
    y_at_vol_knots = tf.concat(
        [self._zero_padding,
         _cumsum_using_matvec(y_between_vol_knots)], axis=1)

    vn = tf.concat(
        [self._zero_padding, self._jump_locations], axis=1)
    y_t = self._y_integral(
        tf.gather(vn, time_index, batch_dims=1), t, sigma_t, mr_t)
    y_t = y_t + tf.gather(y_at_vol_knots, time_index, batch_dims=1)
    return tf.math.exp(-2 * mr_t * t) * y_t 
开发者ID:google,项目名称:tf-quant-finance,代码行数:19,代码来源:vector_hull_white.py

示例3: _conditional_variance_x

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import gather [as 别名]
def _conditional_variance_x(self, t, mr_t, sigma_t):
    """Computes the variance of x(t), see [1], Eq. 10.41."""
    t = tf.repeat(tf.expand_dims(t, axis=0), self._dim, axis=0)
    var_x_between_vol_knots = self._variance_int(self._padded_knots,
                                                 self._jump_locations,
                                                 self._jump_values_vol,
                                                 self._jump_values_mr)
    varx_at_vol_knots = tf.concat(
        [self._zero_padding,
         _cumsum_using_matvec(var_x_between_vol_knots)],
        axis=1)

    time_index = tf.searchsorted(self._jump_locations, t)
    vn = tf.concat(
        [self._zero_padding,
         self._jump_locations], axis=1)

    var_x_t = self._variance_int(
        tf.gather(vn, time_index, batch_dims=1), t, sigma_t, mr_t)
    var_x_t = var_x_t + tf.gather(varx_at_vol_knots, time_index, batch_dims=1)

    var_x_t = (var_x_t[:, 1:] - var_x_t[:, :-1]) * tf.math.exp(
        -2 * tf.broadcast_to(mr_t, t.shape)[:, 1:] * t[:, 1:])
    return var_x_t 
开发者ID:google,项目名称:tf-quant-finance,代码行数:26,代码来源:vector_hull_white.py

示例4: convert_sharded_tensor_to_eager_tensor

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import gather [as 别名]
def convert_sharded_tensor_to_eager_tensor(value, *args, **kwargs):
  del args, kwargs
  # TODO(nareshmodi): Consider a collective op to gather the tensors from the
  # various devices for performance reasons.
  return tf.stack(value.tensors) 
开发者ID:google,项目名称:trax,代码行数:7,代码来源:extensions.py

示例5: _randomize

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import gather [as 别名]
def _randomize(coeffs, radixes, seed, perms=None):
  """Applies the Owen (2017) randomization to the coefficients."""
  given_dtype = coeffs.dtype
  coeffs = tf.cast(coeffs, dtype=tf.int32)
  num_coeffs = _NUM_COEFFS_BY_DTYPE[given_dtype]
  radixes = tf.reshape(tf.cast(radixes, dtype=tf.int32), shape=[-1])
  if perms is None:
    perms = _get_permutations(num_coeffs, radixes, seed)
    perms = tf.reshape(perms, shape=[-1])
  radix_sum = tf.reduce_sum(input_tensor=radixes)
  radix_offsets = tf.reshape(tf.cumsum(radixes, exclusive=True), shape=[-1, 1])
  offsets = radix_offsets + tf.range(num_coeffs) * radix_sum
  permuted_coeffs = tf.gather(perms, coeffs + offsets)
  return tf.cast(permuted_coeffs, dtype=given_dtype), perms 
开发者ID:google,项目名称:tf-quant-finance,代码行数:16,代码来源:halton_impl.py

示例6: stateless_random_shuffle

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import gather [as 别名]
def stateless_random_shuffle(input_tensor, seed, name=None):
  """Produces stateless random shuffle of the 1st dimension of an input Tensor.

  This is a stateless version of `tf.random_shuffle`. If run twice with the same
  seed, produces the same result.

  Example
  ```python
  identity_shuffle = tf.range(100)
  random_shuffle = stateless_random_shuffle(identity_shuffle, seed=(42, 2))
  ```

  Args:
    input_tensor: float32, float64, int32 or int64 1-D Tensor.
    seed: int32 or int64 Tensor of shape [2].
    name: Python `str` name prefixed to ops created by this function.

  Returns:
    A Tensor of the same shape and dtype as `input_tensor`.
  """
  with tf.compat.v1.name_scope(name,
                               default_name='stateless_random_shuffle',
                               values=[input_tensor, seed]):
    input_tensor = tf.convert_to_tensor(input_tensor, name='input_tensor')
    seed = tf.convert_to_tensor(seed, name='random_seed')
    uniforms = tf.random.stateless_uniform(
        shape=[tf.shape(input_tensor)[0]], seed=seed, dtype=tf.float64)
  return tf.gather(input_tensor, tf.argsort(uniforms, stable=True, axis=0)) 
开发者ID:google,项目名称:tf-quant-finance,代码行数:30,代码来源:stateless.py

示例7: _prepare_grid

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import gather [as 别名]
def _prepare_grid(self, times, grid_step):
    """Prepares grid of times for path generation.

    Args:
      times:  Rank 1 `Tensor` of increasing positive real values. The times at
        which the path points are to be evaluated.
      grid_step: Rank 0 real `Tensor`. Maximal distance between points in
        resulting grid.

    Returns:
      Tuple `(all_times, mask)`.
      `all_times` is 1-D real `Tensor` containing all points from 'times` and
      whose intervals are at most `grid_step`.
      `mask` is a boolean 1-D tensor of the same shape as 'all_times', showing
      which elements of 'all_times' correspond to values from `times`.
      Guarantees that times[0]=0 and grid_step[0]=False.
      'all_times` is sorted ascending and may contain duplicates.
    """
    grid = tf.range(0.0, times[-1], grid_step, dtype=self._dtype)
    all_times = tf.concat([grid, times], axis=0)
    mask = tf.concat([
        tf.zeros_like(grid, dtype=tf.bool),
        tf.ones_like(times, dtype=tf.bool)
    ],
                     axis=0)
    perm = tf.argsort(all_times, stable=True)
    all_times = tf.gather(all_times, perm)
    mask = tf.gather(mask, perm)
    return all_times, mask 
开发者ID:google,项目名称:tf-quant-finance,代码行数:31,代码来源:ito_process.py

示例8: _prepare_grid

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import gather [as 别名]
def _prepare_grid(*, times, time_step, dtype):
  """Prepares grid of times for path generation.

  Args:
    times:  Rank 1 `Tensor` of increasing positive real values. The times at
      which the path points are to be evaluated.
    time_step: Rank 0 real `Tensor`. Maximal distance between points in
      resulting grid.
    dtype: `tf.Dtype` of the input and output `Tensor`s.

  Returns:
    Tuple `(all_times, mask, time_points)`.
    `all_times` is a 1-D real `Tensor` containing all points from 'times` and
    the uniform grid of points between `[0, times[-1]]` with grid size equal to
    `time_step`. The `Tensor` is sorted in ascending order and may contain
    duplicates.
    `mask` is a boolean 1-D `Tensor` of the same shape as 'all_times', showing
    which elements of 'all_times' correspond to THE values from `times`.
    Guarantees that times[0]=0 and mask[0]=False.
    `time_indices`. An integer `Tensor` of the same shape as `times` indicating
    `times` indices in `all_times`.
  """
  grid = tf.range(0.0, times[-1], time_step, dtype=dtype)
  all_times = tf.concat([grid, times], axis=0)
  mask = tf.concat([
      tf.zeros_like(grid, dtype=tf.bool),
      tf.ones_like(times, dtype=tf.bool)
  ],
                   axis=0)
  perm = tf.argsort(all_times, stable=True)
  all_times = tf.gather(all_times, perm)
  # Remove duplicate points
  all_times = tf.unique(all_times).y
  time_indices = tf.searchsorted(all_times, times)
  mask = tf.gather(mask, perm)
  return all_times, mask, time_indices 
开发者ID:google,项目名称:tf-quant-finance,代码行数:38,代码来源:euler_sampling.py

示例9: _prepare_grid

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import gather [as 别名]
def _prepare_grid(times, time_step, dtype, *params):
  """Prepares grid of times for path generation.

  Args:
    times:  Rank 1 `Tensor` of increasing positive real values. The times at
      which the path points are to be evaluated.
    time_step: Rank 0 real `Tensor`. Maximal distance between points in
      resulting grid.
    dtype: `tf.Dtype` of the input and output `Tensor`s.
    *params: Parameters of the Heston model. Either scalar `Tensor`s of the
      same `dtype` or instances of `PiecewiseConstantFunc`.

  Returns:
    Tuple `(all_times, mask)`.
    `all_times` is a 1-D real `Tensor` containing all points from 'times`, the
    uniform grid of points between `[0, times[-1]]` with grid size equal to
    `time_step`, and jump locations of piecewise constant parameters The
    `Tensor` is sorted in ascending order and may contain duplicates.
    `mask` is a boolean 1-D `Tensor` of the same shape as 'all_times', showing
    which elements of 'all_times' correspond to THE values from `times`.
    Guarantees that times[0]=0 and mask[0]=False.
  """
  grid = tf.range(0.0, times[-1], time_step, dtype=dtype)
  additional_times = []
  for param in params:
    if isinstance(param, piecewise.PiecewiseConstantFunc):
      additional_times.append(param.jump_locations())
  all_times = tf.concat([grid, times] + additional_times, axis=0)
  additional_times_mask = [
      tf.zeros_like(times, dtype=tf.bool) for times in additional_times]
  mask = tf.concat([
      tf.zeros_like(grid, dtype=tf.bool),
      tf.ones_like(times, dtype=tf.bool)
  ] + additional_times_mask, axis=0)
  perm = tf.argsort(all_times, stable=True)
  all_times = tf.gather(all_times, perm)
  mask = tf.gather(mask, perm)
  return all_times, mask 
开发者ID:google,项目名称:tf-quant-finance,代码行数:40,代码来源:heston_model.py

示例10: _conditional_mean_x

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import gather [as 别名]
def _conditional_mean_x(self, t, mr_t, sigma_t):
    """Computes the drift term in [1], Eq. 10.39."""
    t = tf.repeat(tf.expand_dims(t, axis=0), self._dim, axis=0)
    time_index = tf.searchsorted(self._jump_locations, t)
    vn = tf.concat([self._zero_padding, self._jump_locations], axis=1)
    y_between_vol_knots = self._y_integral(self._padded_knots,
                                           self._jump_locations,
                                           self._jump_values_vol,
                                           self._jump_values_mr)

    y_at_vol_knots = tf.concat(
        [self._zero_padding,
         _cumsum_using_matvec(y_between_vol_knots)], axis=1)

    ex_between_vol_knots = self._ex_integral(self._padded_knots,
                                             self._jump_locations,
                                             self._jump_values_vol,
                                             self._jump_values_mr,
                                             y_at_vol_knots[:, :-1])

    ex_at_vol_knots = tf.concat(
        [self._zero_padding,
         _cumsum_using_matvec(ex_between_vol_knots)], axis=1)

    c = tf.gather(y_at_vol_knots, time_index, batch_dims=1)
    exp_x_t = self._ex_integral(
        tf.gather(vn, time_index, batch_dims=1), t, sigma_t, mr_t, c)
    exp_x_t = exp_x_t + tf.gather(ex_at_vol_knots, time_index, batch_dims=1)
    exp_x_t = (exp_x_t[:, 1:] - exp_x_t[:, :-1]) * tf.math.exp(
        -tf.broadcast_to(mr_t, t.shape)[:, 1:] * t[:, 1:])
    return exp_x_t 
开发者ID:google,项目名称:tf-quant-finance,代码行数:33,代码来源:vector_hull_white.py

示例11: _prepare_grid

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import gather [as 别名]
def _prepare_grid(times, *params):
  """Prepares grid of times for path generation.

  Args:
    times:  Rank 1 `Tensor` of increasing positive real values. The times at
      which the path points are to be evaluated.
    *params: Parameters of the Heston model. Either scalar `Tensor`s of the
      same `dtype` or instances of `PiecewiseConstantFunc`.

  Returns:
    Tuple `(all_times, mask)`.
    `all_times` is a 1-D real `Tensor` containing all points from 'times`, the
    uniform grid of points between `[0, times[-1]]` with grid size equal to
    `time_step`, and jump locations of piecewise constant parameters The
    `Tensor` is sorted in ascending order and may contain duplicates.
    `mask` is a boolean 1-D `Tensor` of the same shape as 'all_times', showing
    which elements of 'all_times' correspond to THE values from `times`.
    Guarantees that times[0]=0 and mask[0]=False.
  """
  additional_times = []
  for param in params:
    if hasattr(param, 'is_piecewise_constant'):
      if param.is_piecewise_constant:
        # Flatten all jump locations
        additional_times.append(tf.reshape(param.jump_locations(), [-1]))
  zeros = tf.constant([0], dtype=times.dtype)
  all_times = tf.concat([zeros] + [times] + additional_times, axis=0)
  additional_times_mask = [
      tf.zeros_like(times, dtype=tf.bool) for times in additional_times]
  mask = tf.concat([
      tf.cast(zeros, dtype=tf.bool),
      tf.ones_like(times, dtype=tf.bool)
  ] + additional_times_mask, axis=0)
  perm = tf.argsort(all_times, stable=True)
  all_times = tf.gather(all_times, perm)
  mask = tf.gather(mask, perm)
  return all_times, mask 
开发者ID:google,项目名称:tf-quant-finance,代码行数:39,代码来源:vector_hull_white.py

示例12: _compute_is_bus_day_table

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import gather [as 别名]
def _compute_is_bus_day_table(self):
    """Computes and caches "is business day" table."""
    if self._table_cache.is_bus_day is not None:
      return self._table_cache.is_bus_day

    with tf.init_scope():
      ordinals = tf.range(self._ordinal_offset,
                          self._ordinal_offset + self._calendar_size)
      # Apply weekend mask
      week_days = (ordinals - 1) % 7
      is_holiday = tf.gather(self._weekend_mask, week_days)

      # Apply holidays
      if self._holidays is not None:
        indices = self._holidays.ordinal() - self._ordinal_offset
        ones_at_indices = tf.scatter_nd(
            tf.expand_dims(indices, axis=-1), tf.ones_like(indices),
            is_holiday.shape)
        is_holiday = tf.bitwise.bitwise_or(is_holiday, ones_at_indices)

      # Add a business day at the beginning and at the end, i.e. at 31 Dec of
      # start_year-1 and at 1 Jan of end_year+1. This trick is to avoid dealing
      # with special cases on boundaries.
      # For example, for Following and Preceding conventions we'd need a special
      # value that means "unknown" in the tables. More complicated conventions
      # then combine the Following and Preceding tables, and would need special
      # treatment of the "unknown" values.
      # With these "fake" business days, all computations are automatically
      # correct, unless we land on those extra days - for this reason we add
      # assertions in all API calls before returning.
      is_bus_day_table = tf.concat([[1], 1 - is_holiday, [1]], axis=0)
      self._table_cache.is_bus_day = is_bus_day_table
    return is_bus_day_table 
开发者ID:google,项目名称:tf-quant-finance,代码行数:35,代码来源:bounded_holiday_calendar.py

示例13: _gather

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import gather [as 别名]
def _gather(self, table, indices):
    table_size = self._calendar_size + 2
    assert1 = tf.debugging.assert_greater_equal(
        indices, 0, message=_OUT_OF_BOUNDS_MSG)
    assert2 = tf.debugging.assert_less(
        indices, table_size, message=_OUT_OF_BOUNDS_MSG)
    with tf.control_dependencies([assert1, assert2]):
      return tf.gather(table, indices) 
开发者ID:google,项目名称:tf-quant-finance,代码行数:10,代码来源:bounded_holiday_calendar.py

示例14: day_of_year

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import gather [as 别名]
def day_of_year(self):
    """Calculates the number of days since the beginning of the year.

    Returns:
      Tensor of int32 type with elements in range [1, 366]. January 1st yields
      "1".

    #### Example

    ```python
    dt = tff.datetime.dates_from_tuples([(2019, 1, 25), (2020, 3, 2)])
    dt.day_of_year()  # [25, 62]
    ```
    """
    if self._day_of_year is None:
      cumul_days_in_month_nonleap = tf.math.cumsum(
          _DAYS_IN_MONTHS_NON_LEAP, exclusive=True)
      cumul_days_in_month_leap = tf.math.cumsum(
          _DAYS_IN_MONTHS_LEAP, exclusive=True)
      days_before_month_non_leap = tf.gather(cumul_days_in_month_nonleap,
                                             self.month() - 1)
      days_before_month_leap = tf.gather(cumul_days_in_month_leap,
                                         self.month() - 1)
      days_before_month = tf.where(
          date_utils.is_leap_year(self.year()), days_before_month_leap,
          days_before_month_non_leap)
      self._day_of_year = days_before_month + self.day()
    return self._day_of_year 
开发者ID:google,项目名称:tf-quant-finance,代码行数:30,代码来源:date_tensor.py

示例15: _num_days_in_month

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import gather [as 别名]
def _num_days_in_month(month, year):
  """Returns number of days in a given month of a given year."""
  days_in_months = tf.constant(_DAYS_IN_MONTHS_COMBINED, tf.int32)
  is_leap = date_utils.is_leap_year(year)
  return tf.gather(days_in_months,
                   month + 12 * tf.dtypes.cast(is_leap, tf.int32)) 
开发者ID:google,项目名称:tf-quant-finance,代码行数:8,代码来源:date_tensor.py


注:本文中的tensorflow.compat.v2.gather方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。