当前位置: 首页>>代码示例>>Python>>正文


Python v2.executing_eagerly方法代码示例

本文整理汇总了Python中tensorflow.compat.v2.executing_eagerly方法的典型用法代码示例。如果您正苦于以下问题:Python v2.executing_eagerly方法的具体用法?Python v2.executing_eagerly怎么用?Python v2.executing_eagerly使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.compat.v2的用法示例。


在下文中一共展示了v2.executing_eagerly方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_dynamic_shapes

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import executing_eagerly [as 别名]
def test_dynamic_shapes(self):
    """Can build op with dynamic shapes in graph mode."""
    if tf.executing_eagerly():
      return
    minimum = np.array([1.0, 1.0])
    scales = np.array([2.0, 3.0])

    @tff.math.make_val_and_grad_fn
    def quadratic(x):
      return tf.reduce_sum(input_tensor=scales * (x - minimum)**2)

    # Test with a vector of unknown dimension.
    start = tf.compat.v1.placeholder(tf.float32, shape=[None])
    op = tff.math.optimizer.conjugate_gradient_minimize(
        quadratic, initial_position=start, tolerance=1e-8)
    self.assertFalse(op.position.shape.is_fully_defined())

    with self.cached_session() as session:
      results = session.run(op, feed_dict={start: [0.6, 0.8]})
    self.assertTrue(results.converged)
    self.assertLessEqual(_norm(results.objective_gradient), 1e-8)
    self.assertArrayNear(results.position, minimum, 1e-5) 
开发者ID:google,项目名称:tf-quant-finance,代码行数:24,代码来源:conjugate_gradient_test.py

示例2: test_run_in_graph_and_eager_modes

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import executing_eagerly [as 别名]
def test_run_in_graph_and_eager_modes(self):
    l = []
    def inc(self, with_brackets):
      del self  # self argument is required by run_in_graph_and_eager_modes.
      mode = 'eager' if tf.executing_eagerly() else 'graph'
      with_brackets = 'with_brackets' if with_brackets else 'without_brackets'
      l.append((with_brackets, mode))

    f = test_utils.run_in_graph_and_eager_modes(inc)
    f(self, with_brackets=False)
    f = test_utils.run_in_graph_and_eager_modes()(inc)
    f(self, with_brackets=True)

    self.assertEqual(len(l), 4)
    self.assertEqual(set(l), {
        ('with_brackets', 'graph'),
        ('with_brackets', 'eager'),
        ('without_brackets', 'graph'),
        ('without_brackets', 'eager'),
    }) 
开发者ID:tensorflow,项目名称:datasets,代码行数:22,代码来源:test_utils_test.py

示例3: test_run_in_graph_and_eager_modes_setup_in_same_mode

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import executing_eagerly [as 别名]
def test_run_in_graph_and_eager_modes_setup_in_same_mode(self):
    modes = []
    mode_name = lambda: 'eager' if tf.executing_eagerly() else 'graph'

    class ExampleTest(test_case.TestCase):

      def runTest(self):
        pass

      def setUp(self):
        super(ExampleTest, self).setUp()
        modes.append('setup_' + mode_name())

      @test_utils.run_in_graph_and_eager_modes
      def testBody(self):
        modes.append('run_' + mode_name())

    e = ExampleTest()
    e.setUp()
    e.testBody()

    self.assertEqual(modes[0:2], ['setup_eager', 'run_eager'])
    self.assertEqual(modes[2:], ['setup_graph', 'run_graph']) 
开发者ID:tensorflow,项目名称:datasets,代码行数:25,代码来源:test_utils_test.py

示例4: test_compute_distance_matrix_loo

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import executing_eagerly [as 别名]
def test_compute_distance_matrix_loo(self):
    if not tf.executing_eagerly():
      self.skipTest("Test requires eager mode.")
    np.random.seed(seed=self.random_seed)
    x_train = np.random.rand(self.train_samples, self.dim)

    d = utils.compute_distance_matrix_loo(x_train)
    self.assertEqual(d.shape, (self.train_samples, self.train_samples))

    for i in range(self.train_samples):
      for j in range(self.train_samples):
        if i == j:
          self.assertEqual(float("inf"), d[i, j])
        else:
          d_ij = np.linalg.norm(x_train[j, :] - x_train[i, :])**2
          self.assertAlmostEqual(d_ij, d[i, j], places=5) 
开发者ID:tensorflow,项目名称:hub,代码行数:18,代码来源:utils_test.py

示例5: test_compute_distance_matrix_loo_cosine

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import executing_eagerly [as 别名]
def test_compute_distance_matrix_loo_cosine(self):
    if not tf.executing_eagerly():
      self.skipTest("Test requires eager mode.")
    np.random.seed(seed=self.random_seed)
    x_train = np.random.rand(self.train_samples, self.dim)

    d = utils.compute_distance_matrix_loo(x_train, measure="cosine")
    self.assertEqual(d.shape, (self.train_samples, self.train_samples))

    for i in range(self.train_samples):
      for j in range(self.train_samples):
        if i == j:
          self.assertEqual(float("inf"), d[i, j])
        else:
          d_ij = spdist.cosine(x_train[i, :], x_train[j, :])
          self.assertAlmostEqual(d_ij, d[i, j], places=5) 
开发者ID:tensorflow,项目名称:hub,代码行数:18,代码来源:utils_test.py

示例6: knn_errorrate

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import executing_eagerly [as 别名]
def knn_errorrate(self, k):
    if not tf.executing_eagerly():
      self.skipTest("Test requires eager mode.")
    x_train = np.random.rand(self.train_samples, self.dim)
    x_test = np.random.rand(self.test_samples, self.dim)

    d = utils.compute_distance_matrix(x_train, x_test)

    y_test = np.random.randint(self.classes, size=self.test_samples)
    y_train = np.random.randint(self.classes, size=self.train_samples)

    err = utils.knn_errorrate(d, y_train, y_test, k=k)

    knn = KNeighborsClassifier(n_neighbors=k)
    knn.fit(x_train, y_train)
    y_pred = knn.predict(x_test)
    acc = metrics.accuracy_score(y_test, y_pred)

    self.assertAlmostEqual(1.0 - err, acc, places=5) 
开发者ID:tensorflow,项目名称:hub,代码行数:21,代码来源:utils_test.py

示例7: test_knn_errorrate_multik

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import executing_eagerly [as 别名]
def test_knn_errorrate_multik(self):
    if not tf.executing_eagerly():
      self.skipTest("Test requires eager mode.")
    np.random.seed(seed=self.random_seed)
    x_train = np.random.rand(self.train_samples, self.dim)
    x_test = np.random.rand(self.test_samples, self.dim)

    d = utils.compute_distance_matrix(x_train, x_test)

    y_test = np.random.randint(self.classes, size=self.test_samples)
    y_train = np.random.randint(self.classes, size=self.train_samples)

    ks_input = [5, 1, 5, 3]
    ks = [5,3,1]
    vals = []
    for val in ks:
        err = utils.knn_errorrate(d, y_train, y_test, k=val)
        vals.append(err)

    comp = utils.knn_errorrate(d, y_train, y_test, k=ks_input)

    self.assertEqual(len(vals), len(comp))
    for k, v in enumerate(comp):
        self.assertAlmostEqual(v, vals[k], places=5) 
开发者ID:tensorflow,项目名称:hub,代码行数:26,代码来源:utils_test.py

示例8: knn_errorrate_loo

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import executing_eagerly [as 别名]
def knn_errorrate_loo(self, k):
    if not tf.executing_eagerly():
      self.skipTest("Test requires eager mode.")
    x_train = np.random.rand(self.train_samples, self.dim)

    d = utils.compute_distance_matrix_loo(x_train)

    y_train = np.random.randint(self.classes, size=self.train_samples)

    err = utils.knn_errorrate_loo(d, y_train, k=k)

    cnt = 0.0
    for i in range(self.train_samples):
      knn = KNeighborsClassifier(n_neighbors=k)
      mask = [True]*self.train_samples
      mask[i] = False
      knn.fit(x_train[mask], y_train[mask])
      y_pred = knn.predict(x_train[i].reshape(-1, self.dim))
      if y_pred != y_train[i]:
        cnt += 1

    self.assertAlmostEqual(err, cnt / self.train_samples, places=5) 
开发者ID:tensorflow,项目名称:hub,代码行数:24,代码来源:utils_test.py

示例9: test_knn_errorrate_loo_multik

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import executing_eagerly [as 别名]
def test_knn_errorrate_loo_multik(self):
    if not tf.executing_eagerly():
      self.skipTest("Test requires eager mode.")
    np.random.seed(seed=self.random_seed)
    x_train = np.random.rand(self.train_samples, self.dim)

    d = utils.compute_distance_matrix_loo(x_train)

    y_train = np.random.randint(self.classes, size=self.train_samples)

    ks_input = [5, 1, 5, 3]
    ks = [5,3,1]
    vals = []
    for val in ks:
        err = utils.knn_errorrate_loo(d, y_train, k=val)
        vals.append(err)

    comp = utils.knn_errorrate_loo(d, y_train, k=ks_input)

    self.assertEqual(len(vals), len(comp))
    for k, v in enumerate(comp):
        self.assertAlmostEqual(v, vals[k], places=5) 
开发者ID:tensorflow,项目名称:hub,代码行数:24,代码来源:utils_test.py

示例10: generate_preset_test_rotation_matrices_3d

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import executing_eagerly [as 别名]
def generate_preset_test_rotation_matrices_3d():
  """Generates pre-set test 3d rotation matrices."""
  angles = generate_preset_test_euler_angles()
  preset_rotation_matrix = rotation_matrix_3d.from_euler(angles)
  if tf.executing_eagerly():
    return np.array(preset_rotation_matrix)
  with tf.compat.v1.Session() as sess:
    return np.array(sess.run([preset_rotation_matrix])) 
开发者ID:tensorflow,项目名称:graphics,代码行数:10,代码来源:test_helpers.py

示例11: generate_preset_test_rotation_matrices_2d

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import executing_eagerly [as 别名]
def generate_preset_test_rotation_matrices_2d():
  """Generates pre-set test 2d rotation matrices."""
  angles = generate_preset_test_euler_angles(dimensions=1)
  preset_rotation_matrix = rotation_matrix_2d.from_euler(angles)
  if tf.executing_eagerly():
    return np.array(preset_rotation_matrix)
  with tf.compat.v1.Session() as sess:
    return np.array(sess.run([preset_rotation_matrix])) 
开发者ID:tensorflow,项目名称:graphics,代码行数:10,代码来源:test_helpers.py

示例12: generate_preset_test_axis_angle

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import executing_eagerly [as 别名]
def generate_preset_test_axis_angle():
  """Generates pre-set test rotation matrices."""
  angles = generate_preset_test_euler_angles()
  axis, angle = axis_angle.from_euler(angles)
  if tf.executing_eagerly():
    return np.array(axis), np.array(angle)
  with tf.compat.v1.Session() as sess:
    return np.array(sess.run([axis])), np.array(sess.run([angle])) 
开发者ID:tensorflow,项目名称:graphics,代码行数:10,代码来源:test_helpers.py

示例13: generate_preset_test_quaternions

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import executing_eagerly [as 别名]
def generate_preset_test_quaternions():
  """Generates pre-set test quaternions."""
  angles = generate_preset_test_euler_angles()
  preset_quaternion = quaternion.from_euler(angles)
  if tf.executing_eagerly():
    return np.array(preset_quaternion)
  with tf.compat.v1.Session() as sess:
    return np.array(sess.run([preset_quaternion])) 
开发者ID:tensorflow,项目名称:graphics,代码行数:10,代码来源:test_helpers.py

示例14: test_valid_gradients

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import executing_eagerly [as 别名]
def test_valid_gradients(self, optimize_for_tpu):
    """Tests none of the gradients is nan."""

    # In this example, `x[0]` and `x[1]` are both less than or equal to
    # `x_data[0]`. `x[-2]` and `x[-1]` are both greater than or equal to
    # `x_data[-1]`. They are set up this way to test none of the tf.where
    # branches of the implementation have any nan. An unselected nan could still
    # propagate through gradient calculation with the end result being nan.
    x = [[-10.0, -1.0, 1.0, 3.0, 6.0, 7.0], [8.0, 15.0, 18.0, 25.0, 30.0, 35.0]]
    x_data = [[-1.0, 2.0, 6.0], [8.0, 18.0, 30.0]]

    def _value_helper_fn(y_data):
      """A helper function that returns sum of squared interplated values."""

      interpolated_values = tff.math.interpolation.linear.interpolate(
          x, x_data, y_data,
          optimize_for_tpu=optimize_for_tpu,
          dtype=tf.float64)
      return tf.reduce_sum(tf.math.square(interpolated_values))

    y_data = tf.convert_to_tensor([[10.0, -1.0, -5.0], [7.0, 9.0, 20.0]],
                                  dtype=tf.float64)
    if tf.executing_eagerly():
      with tf.GradientTape(watch_accessed_variables=False) as tape:
        tape.watch(y_data)
        value = _value_helper_fn(y_data=y_data)
        gradients = tape.gradient(value, y_data)
    else:
      value = _value_helper_fn(y_data=y_data)
      gradients = tf.gradients(value, y_data)[0]

    gradients = tf.convert_to_tensor(gradients)

    self.assertFalse(self.evaluate(tf.reduce_any(tf.math.is_nan(gradients)))) 
开发者ID:google,项目名称:tf-quant-finance,代码行数:36,代码来源:linear_interpolation_test.py

示例15: __repr__

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import executing_eagerly [as 别名]
def __repr__(self):
    output = "PeriodTensor: shape={}".format(self.shape)
    if tf.executing_eagerly():
      return output + ", quantities={}".format(repr(self._quantity.numpy()))
    return output 
开发者ID:google,项目名称:tf-quant-finance,代码行数:7,代码来源:periods.py


注:本文中的tensorflow.compat.v2.executing_eagerly方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。