当前位置: 首页>>代码示例>>Python>>正文


Python v2.convert_to_tensor方法代码示例

本文整理汇总了Python中tensorflow.compat.v2.convert_to_tensor方法的典型用法代码示例。如果您正苦于以下问题:Python v2.convert_to_tensor方法的具体用法?Python v2.convert_to_tensor怎么用?Python v2.convert_to_tensor使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.compat.v2的用法示例。


在下文中一共展示了v2.convert_to_tensor方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_conjugate_preset

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import convert_to_tensor [as 别名]
def test_conjugate_preset(self):
    """Tests if the conjugate function is providing correct results."""
    x_init = test_helpers.generate_preset_test_dual_quaternions()
    x = tf.convert_to_tensor(value=x_init)
    y = tf.convert_to_tensor(value=x_init)

    x = dual_quaternion.conjugate(x)
    x_real, x_dual = tf.split(x, (4, 4), axis=-1)

    y_real, y_dual = tf.split(y, (4, 4), axis=-1)
    xyz_y_real, w_y_real = tf.split(y_real, (3, 1), axis=-1)
    xyz_y_dual, w_y_dual = tf.split(y_dual, (3, 1), axis=-1)
    y_real = tf.concat((-xyz_y_real, w_y_real), axis=-1)
    y_dual = tf.concat((-xyz_y_dual, w_y_dual), axis=-1)

    self.assertAllEqual(x_real, y_real)
    self.assertAllEqual(x_dual, y_dual) 
开发者ID:tensorflow,项目名称:graphics,代码行数:19,代码来源:dual_quaternion_test.py

示例2: generate_preset_test_dual_quaternions

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import convert_to_tensor [as 别名]
def generate_preset_test_dual_quaternions():
  """Generates pre-set test quaternions."""
  angles = generate_preset_test_euler_angles()
  preset_quaternion_real = quaternion.from_euler(angles)

  translations = generate_preset_test_translations()
  translations = np.concatenate(
      (translations / 2.0, np.zeros((np.ma.size(translations, 0), 1))), axis=1)
  preset_quaternion_translation = tf.convert_to_tensor(value=translations)

  preset_quaternion_dual = quaternion.multiply(preset_quaternion_translation,
                                               preset_quaternion_real)

  preset_dual_quaternion = tf.concat(
      (preset_quaternion_real, preset_quaternion_dual), axis=-1)

  return preset_dual_quaternion 
开发者ID:tensorflow,项目名称:graphics,代码行数:19,代码来源:test_helpers.py

示例3: generate_random_test_dual_quaternions

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import convert_to_tensor [as 别名]
def generate_random_test_dual_quaternions():
  """Generates random test dual quaternions."""
  angles = generate_random_test_euler_angles()
  random_quaternion_real = quaternion.from_euler(angles)

  min_translation = -3.0
  max_translation = 3.0
  translations = np.random.uniform(min_translation, max_translation,
                                   angles.shape)

  translations_quaternion_shape = np.asarray(translations.shape)
  translations_quaternion_shape[-1] = 1
  translations = np.concatenate(
      (translations / 2.0, np.zeros(translations_quaternion_shape)), axis=-1)

  random_quaternion_translation = tf.convert_to_tensor(value=translations)

  random_quaternion_dual = quaternion.multiply(random_quaternion_translation,
                                               random_quaternion_real)

  random_dual_quaternion = tf.concat(
      (random_quaternion_real, random_quaternion_dual), axis=-1)

  return random_dual_quaternion 
开发者ID:tensorflow,项目名称:graphics,代码行数:26,代码来源:test_helpers.py

示例4: testJitNoUnnecessaryTracing

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import convert_to_tensor [as 别名]
def testJitNoUnnecessaryTracing(self):

    def num_traces(f):
      return len(f.tf_function._list_all_concrete_functions_for_serialization())

    def check_trace_only_once(arg1, arg2):

      @extensions.jit
      def f(a):
        return a + 1

      self.assertAllEqual(0, num_traces(f))
      f(arg1)
      self.assertAllEqual(1, num_traces(f))
      f(arg2)
      self.assertAllEqual(1, num_traces(f))

    check_trace_only_once(1, 2)
    check_trace_only_once(1.1, 2.1)
    check_trace_only_once(tf_np.asarray(1), tf_np.asarray(2))
    check_trace_only_once(
        tf.convert_to_tensor(value=1), tf.convert_to_tensor(value=2)) 
开发者ID:google,项目名称:trax,代码行数:24,代码来源:extensions_test.py

示例5: testEvalOnShapesNoUnnecessaryTracing

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import convert_to_tensor [as 别名]
def testEvalOnShapesNoUnnecessaryTracing(self):

    def num_traces(f):
      return len(
          f._tf_function._list_all_concrete_functions_for_serialization())

    def check_trace_only_once(arg1, arg2):

      @extensions.eval_on_shapes
      def f(a):
        return a + 1

      self.assertAllEqual(0, num_traces(f))
      f(arg1)
      self.assertAllEqual(1, num_traces(f))
      f(arg2)
      self.assertAllEqual(1, num_traces(f))

    check_trace_only_once(1, 2)
    check_trace_only_once(1.1, 2.1)
    check_trace_only_once(tf_np.asarray(1), tf_np.asarray(2))
    check_trace_only_once(
        tf.convert_to_tensor(value=1), tf.convert_to_tensor(value=2)) 
开发者ID:google,项目名称:trax,代码行数:25,代码来源:extensions_test.py

示例6: zeros_like

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import convert_to_tensor [as 别名]
def zeros_like(a, dtype=None):
  """Returns an array of zeros with the shape and type of the input array.

  Args:
    a: array_like. Could be an ndarray, a Tensor or any object that can be
      converted to a Tensor using `tf.convert_to_tensor`.
    dtype: Optional, defaults to dtype of the input array. The type of the
      resulting ndarray. Could be a python type, a NumPy type or a TensorFlow
      `DType`.

  Returns:
    An ndarray.
  """
  if isinstance(a, arrays_lib.ndarray):
    a = a.data
  if dtype is None:
    # We need to let utils.result_type decide the dtype, not tf.zeros_like
    dtype = utils.result_type(a)
  else:
    # TF and numpy has different interpretations of Python types such as
    # `float`, so we let `utils.result_type` decide.
    dtype = utils.result_type(dtype)
  dtype = tf.as_dtype(dtype)  # Work around b/149877262
  return arrays_lib.tensor_to_ndarray(tf.zeros_like(a, dtype)) 
开发者ID:google,项目名称:trax,代码行数:26,代码来源:array_ops.py

示例7: ones_like

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import convert_to_tensor [as 别名]
def ones_like(a, dtype=None):
  """Returns an array of ones with the shape and type of the input array.

  Args:
    a: array_like. Could be an ndarray, a Tensor or any object that can be
      converted to a Tensor using `tf.convert_to_tensor`.
    dtype: Optional, defaults to dtype of the input array. The type of the
      resulting ndarray. Could be a python type, a NumPy type or a TensorFlow
      `DType`.

  Returns:
    An ndarray.
  """
  if isinstance(a, arrays_lib.ndarray):
    a = a.data
  if dtype is None:
    dtype = utils.result_type(a)
  else:
    dtype = utils.result_type(dtype)
  return arrays_lib.tensor_to_ndarray(tf.ones_like(a, dtype)) 
开发者ID:google,项目名称:trax,代码行数:22,代码来源:array_ops.py

示例8: diagflat

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import convert_to_tensor [as 别名]
def diagflat(v, k=0):
  """Returns a 2-d array with flattened `v` as diagonal.

  Args:
    v: array_like of any rank. Gets flattened when setting as diagonal. Could be
      an ndarray, a Tensor or any object that can be converted to a Tensor using
      `tf.convert_to_tensor`.
    k: Position of the diagonal. Defaults to 0, the main diagonal. Positive
      values refer to diagonals shifted right, negative values refer to
      diagonals shifted left.

  Returns:
    2-d ndarray.
  """
  v = asarray(v)
  return diag(tf.reshape(v.data, [-1]), k) 
开发者ID:google,项目名称:trax,代码行数:18,代码来源:array_ops.py

示例9: any

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import convert_to_tensor [as 别名]
def any(a, axis=None, keepdims=None):  # pylint: disable=redefined-builtin
  """Whether any element in the entire array or in an axis evaluates to true.

  Casts the array to bool type if it is not already and uses `tf.reduce_any` to
  compute the result.

  Args:
    a: array_like. Could be an ndarray, a Tensor or any object that can
      be converted to a Tensor using `tf.convert_to_tensor`.
    axis: Optional. Could be an int or a tuple of integers. If not specified,
      the reduction is performed over all array indices.
    keepdims: If true, retains reduced dimensions with length 1.

  Returns:
    An ndarray. Note that unlike NumPy this does not return a scalar bool if
    `axis` is None.
  """
  a = asarray(a, dtype=bool)
  return utils.tensor_to_ndarray(
      tf.reduce_any(input_tensor=a.data, axis=axis, keepdims=keepdims)) 
开发者ID:google,项目名称:trax,代码行数:22,代码来源:array_ops.py

示例10: imag

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import convert_to_tensor [as 别名]
def imag(a):
  """Returns imaginary parts of all elements in `a`.

  Uses `tf.imag`.

  Args:
    a: array_like. Could be an ndarray, a Tensor or any object that can
      be converted to a Tensor using `tf.convert_to_tensor`.

  Returns:
    An ndarray with the same shape as `a`.
  """
  a = asarray(a)
  # TODO(srbs): np.imag returns a scalar if a is a scalar, whereas we always
  # return an ndarray.
  return utils.tensor_to_ndarray(tf.math.imag(a.data)) 
开发者ID:google,项目名称:trax,代码行数:18,代码来源:array_ops.py

示例11: real

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import convert_to_tensor [as 别名]
def real(val):
  """Returns real parts of all elements in `a`.

  Uses `tf.real`.

  Args:
    val: array_like. Could be an ndarray, a Tensor or any object that can
      be converted to a Tensor using `tf.convert_to_tensor`.

  Returns:
    An ndarray with the same shape as `a`.
  """
  val = asarray(val)
  # TODO(srbs): np.real returns a scalar if val is a scalar, whereas we always
  # return an ndarray.
  return utils.tensor_to_ndarray(tf.math.real(val.data)) 
开发者ID:google,项目名称:trax,代码行数:18,代码来源:array_ops.py

示例12: transpose

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import convert_to_tensor [as 别名]
def transpose(a, axes=None):
  """Permutes dimensions of the array.

  Args:
    a: array_like. Could be an ndarray, a Tensor or any object that can
      be converted to a Tensor using `tf.convert_to_tensor`.
    axes: array_like. A list of ints with length rank(a) or None specifying the
      order of permutation. The i'th dimension of the output array corresponds
      to axes[i]'th dimension of the `a`. If None, the axes are reversed.

  Returns:
    An ndarray.
  """
  a = asarray(a)
  if axes is not None:
    axes = asarray(axes)
  return utils.tensor_to_ndarray(tf.transpose(a=a.data, perm=axes)) 
开发者ID:google,项目名称:trax,代码行数:19,代码来源:array_ops.py

示例13: _scalar

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import convert_to_tensor [as 别名]
def _scalar(tf_fn, x, promote_to_float=False):
  """Computes the tf_fn(x) for each element in `x`.

  Args:
    tf_fn: function that takes a single Tensor argument.
    x: array_like. Could be an ndarray, a Tensor or any object that can
      be converted to a Tensor using `tf.convert_to_tensor`.
    promote_to_float: whether to cast the argument to a float dtype
      (`dtypes.default_float_type`) if it is not already.

  Returns:
    An ndarray with the same shape as `x`. The default output dtype is
    determined by `dtypes.default_float_type`, unless x is an ndarray with a
    floating point type, in which case the output type is same as x.dtype.
  """
  x = array_ops.asarray(x)
  if promote_to_float and not np.issubdtype(x.dtype, np.inexact):
    x = x.astype(dtypes.default_float_type())
  return utils.tensor_to_ndarray(tf_fn(x.data)) 
开发者ID:google,项目名称:trax,代码行数:21,代码来源:math_ops.py

示例14: _testBinOp

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import convert_to_tensor [as 别名]
def _testBinOp(self, a, b, out, f, types=None):
    a = t2a(tf.convert_to_tensor(value=a, dtype=np.int32))
    b = t2a(tf.convert_to_tensor(value=b, dtype=np.int32))
    if not isinstance(out, arrays.ndarray):
      out = t2a(tf.convert_to_tensor(value=out, dtype=np.int32))
    if types is None:
      types = [[np.int32, np.int32, np.int32],
               [np.int64, np.int32, np.int64],
               [np.int32, np.int64, np.int64],
               [np.float32, np.int32, np.float64],
               [np.int32, np.float32, np.float64],
               [np.float32, np.float32, np.float32],
               [np.float64, np.float32, np.float64],
               [np.float32, np.float64, np.float64]]
    for a_type, b_type, out_type in types:
      o = f(a.astype(a_type), b.astype(b_type))
      self.assertIs(o.dtype.type, out_type)
      self.assertAllEqual(out.astype(out_type), o) 
开发者ID:google,项目名称:trax,代码行数:20,代码来源:arrays_test.py

示例15: setUp

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import convert_to_tensor [as 别名]
def setUp(self):
    super(LogicTest, self).setUp()
    self.array_transforms = [
        lambda x: x,  # Identity,
        tf.convert_to_tensor,
        np.array,
        lambda x: np.array(x, dtype=np.int32),
        lambda x: np.array(x, dtype=np.int64),
        lambda x: np.array(x, dtype=np.float32),
        lambda x: np.array(x, dtype=np.float64),
        array_ops.array,
        lambda x: array_ops.array(x, dtype=tf.int32),
        lambda x: array_ops.array(x, dtype=tf.int64),
        lambda x: array_ops.array(x, dtype=tf.float32),
        lambda x: array_ops.array(x, dtype=tf.float64),
    ] 
开发者ID:google,项目名称:trax,代码行数:18,代码来源:logic_test.py


注:本文中的tensorflow.compat.v2.convert_to_tensor方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。