当前位置: 首页>>代码示例>>Python>>正文


Python v2.concat方法代码示例

本文整理汇总了Python中tensorflow.compat.v2.concat方法的典型用法代码示例。如果您正苦于以下问题:Python v2.concat方法的具体用法?Python v2.concat怎么用?Python v2.concat使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.compat.v2的用法示例。


在下文中一共展示了v2.concat方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: test_conjugate_preset

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import concat [as 别名]
def test_conjugate_preset(self):
    """Tests if the conjugate function is providing correct results."""
    x_init = test_helpers.generate_preset_test_dual_quaternions()
    x = tf.convert_to_tensor(value=x_init)
    y = tf.convert_to_tensor(value=x_init)

    x = dual_quaternion.conjugate(x)
    x_real, x_dual = tf.split(x, (4, 4), axis=-1)

    y_real, y_dual = tf.split(y, (4, 4), axis=-1)
    xyz_y_real, w_y_real = tf.split(y_real, (3, 1), axis=-1)
    xyz_y_dual, w_y_dual = tf.split(y_dual, (3, 1), axis=-1)
    y_real = tf.concat((-xyz_y_real, w_y_real), axis=-1)
    y_dual = tf.concat((-xyz_y_dual, w_y_dual), axis=-1)

    self.assertAllEqual(x_real, y_real)
    self.assertAllEqual(x_dual, y_dual) 
开发者ID:tensorflow,项目名称:graphics,代码行数:19,代码来源:dual_quaternion_test.py

示例2: generate_preset_test_dual_quaternions

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import concat [as 别名]
def generate_preset_test_dual_quaternions():
  """Generates pre-set test quaternions."""
  angles = generate_preset_test_euler_angles()
  preset_quaternion_real = quaternion.from_euler(angles)

  translations = generate_preset_test_translations()
  translations = np.concatenate(
      (translations / 2.0, np.zeros((np.ma.size(translations, 0), 1))), axis=1)
  preset_quaternion_translation = tf.convert_to_tensor(value=translations)

  preset_quaternion_dual = quaternion.multiply(preset_quaternion_translation,
                                               preset_quaternion_real)

  preset_dual_quaternion = tf.concat(
      (preset_quaternion_real, preset_quaternion_dual), axis=-1)

  return preset_dual_quaternion 
开发者ID:tensorflow,项目名称:graphics,代码行数:19,代码来源:test_helpers.py

示例3: generate_random_test_dual_quaternions

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import concat [as 别名]
def generate_random_test_dual_quaternions():
  """Generates random test dual quaternions."""
  angles = generate_random_test_euler_angles()
  random_quaternion_real = quaternion.from_euler(angles)

  min_translation = -3.0
  max_translation = 3.0
  translations = np.random.uniform(min_translation, max_translation,
                                   angles.shape)

  translations_quaternion_shape = np.asarray(translations.shape)
  translations_quaternion_shape[-1] = 1
  translations = np.concatenate(
      (translations / 2.0, np.zeros(translations_quaternion_shape)), axis=-1)

  random_quaternion_translation = tf.convert_to_tensor(value=translations)

  random_quaternion_dual = quaternion.multiply(random_quaternion_translation,
                                               random_quaternion_real)

  random_dual_quaternion = tf.concat(
      (random_quaternion_real, random_quaternion_dual), axis=-1)

  return random_dual_quaternion 
开发者ID:tensorflow,项目名称:graphics,代码行数:26,代码来源:test_helpers.py

示例4: hessian_as_matrix

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import concat [as 别名]
def hessian_as_matrix(function: Callable[[Parameters], tf.Tensor],
                      parameters: Parameters) -> tf.Tensor:
  """Computes the Hessian of a given function.

  Same as `hessian`, although return a matrix of size [w_dim, w_dim], where
  `w_dim` is the number of parameters, which makes it easier to work with.

  Args:
    function: A function for which we want to compute the Hessian.
    parameters: Parameters with respect to the Hessian should be computed.

  Returns:
    A tensor of size [w_dim, w_dim] representing the Hessian.
  """
  hessian_as_tensor_list = hessian(function, parameters)
  hessian_as_tensor_list = [
      tf.reshape(e, [e.shape[0], -1]) for e in hessian_as_tensor_list]
  return tf.concat(hessian_as_tensor_list, axis=1) 
开发者ID:google,项目名称:spectral-density,代码行数:20,代码来源:test_util.py

示例5: test_expected_continuation

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import concat [as 别名]
def test_expected_continuation(self):
    """Tests that expected continuation works in V=1 case.

    In particular this verifies that the regression done to get the expected
    continuation value is performed on those elements which have a positive
    exercise value.
    """
    for dtype in (np.float32, np.float64):
      a = tf.range(start=-2, limit=3, delta=1, dtype=dtype)
      design = tf.concat([a, a], axis=0)
      design = tf.concat([[tf.ones_like(design), design]], axis=1)

      # These values ensure that the expected continuation value is `(1,...,1).`
      exercise_now = tf.expand_dims(
          tf.concat([tf.ones_like(a), tf.zeros_like(a)], axis=0), -1)
      cashflow = tf.expand_dims(
          tf.concat([tf.ones_like(a), -tf.ones_like(a)], axis=0), -1)

      expected_exercise = lsm.expected_exercise_fn(
          design, cashflow, exercise_now)
      self.assertAllClose(expected_exercise, tf.ones_like(cashflow)) 
开发者ID:google,项目名称:tf-quant-finance,代码行数:23,代码来源:lsm_test.py

示例6: _exact_discretization_setup

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import concat [as 别名]
def _exact_discretization_setup(self, dim):
    """Initial setup for efficient computations."""
    self._zero_padding = tf.zeros((dim, 1), dtype=self._dtype)
    self._jump_locations = tf.concat(
        [self._volatility.jump_locations(),
         self._mean_reversion.jump_locations()], axis=-1)
    self._jump_values_vol = self._volatility(self._jump_locations)
    self._jump_values_mr = self._mean_reversion(self._jump_locations)
    if dim == 1:
      self._padded_knots = tf.concat([
          self._zero_padding,
          tf.expand_dims(self._jump_locations[:-1], axis=0)
      ], axis=1)
      self._jump_values_vol = tf.expand_dims(self._jump_values_vol, axis=0)
      self._jump_values_mr = tf.expand_dims(self._jump_values_mr, axis=0)
      self._jump_locations = tf.expand_dims(self._jump_locations, axis=0)

    else:
      self._padded_knots = tf.concat(
          [self._zero_padding, self._jump_locations[:, :-1]], axis=1) 
开发者ID:google,项目名称:tf-quant-finance,代码行数:22,代码来源:vector_hull_white.py

示例7: _compute_yt

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import concat [as 别名]
def _compute_yt(self, t, mr_t, sigma_t):
    """Computes y(t) as described in [1], section 10.1.6.1."""
    t = tf.repeat(tf.expand_dims(t, axis=0), self._dim, axis=0)
    time_index = tf.searchsorted(self._jump_locations, t)
    y_between_vol_knots = self._y_integral(
        self._padded_knots, self._jump_locations, self._jump_values_vol,
        self._jump_values_mr)
    y_at_vol_knots = tf.concat(
        [self._zero_padding,
         _cumsum_using_matvec(y_between_vol_knots)], axis=1)

    vn = tf.concat(
        [self._zero_padding, self._jump_locations], axis=1)
    y_t = self._y_integral(
        tf.gather(vn, time_index, batch_dims=1), t, sigma_t, mr_t)
    y_t = y_t + tf.gather(y_at_vol_knots, time_index, batch_dims=1)
    return tf.math.exp(-2 * mr_t * t) * y_t 
开发者ID:google,项目名称:tf-quant-finance,代码行数:19,代码来源:vector_hull_white.py

示例8: _conditional_variance_x

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import concat [as 别名]
def _conditional_variance_x(self, t, mr_t, sigma_t):
    """Computes the variance of x(t), see [1], Eq. 10.41."""
    t = tf.repeat(tf.expand_dims(t, axis=0), self._dim, axis=0)
    var_x_between_vol_knots = self._variance_int(self._padded_knots,
                                                 self._jump_locations,
                                                 self._jump_values_vol,
                                                 self._jump_values_mr)
    varx_at_vol_knots = tf.concat(
        [self._zero_padding,
         _cumsum_using_matvec(var_x_between_vol_knots)],
        axis=1)

    time_index = tf.searchsorted(self._jump_locations, t)
    vn = tf.concat(
        [self._zero_padding,
         self._jump_locations], axis=1)

    var_x_t = self._variance_int(
        tf.gather(vn, time_index, batch_dims=1), t, sigma_t, mr_t)
    var_x_t = var_x_t + tf.gather(varx_at_vol_knots, time_index, batch_dims=1)

    var_x_t = (var_x_t[:, 1:] - var_x_t[:, :-1]) * tf.math.exp(
        -2 * tf.broadcast_to(mr_t, t.shape)[:, 1:] * t[:, 1:])
    return var_x_t 
开发者ID:google,项目名称:tf-quant-finance,代码行数:26,代码来源:vector_hull_white.py

示例9: test_interpolation_differentiable

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import concat [as 别名]
def test_interpolation_differentiable(self):
    dtype = tf.float64
    interval_times = tf.constant([0.25, 0.5, 1.0, 2.0, 3.0], dtype=dtype)
    knot_1y = tf.constant([0.052], dtype=dtype)
    interval_values = tf.concat([
        tf.constant([0.05, 0.051], dtype=dtype), knot_1y,
        tf.constant([0.053, 0.055], dtype=dtype)
    ],
                                axis=0)
    test_time = tf.constant([1.1, 2.7], dtype=dtype)
    interpolated, _ = monotone_convex.interpolate(test_time, interval_values,
                                                  interval_times)
    gradient_1y = self.evaluate(tf.convert_to_tensor(
        tf.gradients(interpolated[0], knot_1y)[0]))
    gradient_zero = self.evaluate(tf.convert_to_tensor(
        tf.gradients(interpolated[1], knot_1y)[0]))

    self.assertAlmostEqual(gradient_1y[0], 0.42)
    self.assertAlmostEqual(gradient_zero[0], 0.0) 
开发者ID:google,项目名称:tf-quant-finance,代码行数:21,代码来源:monotone_convex_test.py

示例10: test_interpolated_yields_consistency

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import concat [as 别名]
def test_interpolated_yields_consistency(self):
    dtypes = [np.float32, np.float64]
    for dtype in dtypes:
      reference_times = np.array([1.0, 2.0, 3.0, 4.0], dtype=dtype)
      yields = np.array([5.0, 4.75, 4.53333333, 4.775], dtype=dtype)

      # Times for which the interpolated values are required.
      interpolation_times_1 = tf.constant([0.25, 0.5, 1.0, 2.0, 3.0],
                                          dtype=dtype)
      interpolation_times_2 = tf.constant([1.1, 2.5, 2.9, 3.6, 4.0],
                                          dtype=dtype)
      expected = np.array([
          5.1171875, 5.09375, 5.0, 4.75, 4.533333, 4.9746, 4.624082, 4.535422,
          4.661777, 4.775
      ],
                          dtype=dtype)
      actual_1 = monotone_convex.interpolate_yields(
          interpolation_times_1, reference_times, yields=yields)
      actual_2 = monotone_convex.interpolate_yields(
          interpolation_times_2, reference_times, yields=yields)
      actual = self.evaluate(tf.concat([actual_1, actual_2], axis=0))
      np.testing.assert_allclose(actual, expected, rtol=1e-5) 
开发者ID:google,项目名称:tf-quant-finance,代码行数:24,代码来源:monotone_convex_test.py

示例11: _initial_discount_rates

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import concat [as 别名]
def _initial_discount_rates(bond_cashflows,
                            bond_cashflow_times,
                            present_values,
                            name='initial_discount_rates'):
  """Constructs a guess for the initial rates as the yields to maturity."""
  n = len(bond_cashflows)
  groups = []
  for i in range(n):
    groups.append(tf.fill(tf.shape(bond_cashflows[i]), i))
  bond_cashflows = tf.concat(bond_cashflows, axis=0)
  bond_cashflow_times = tf.concat(bond_cashflow_times, axis=0)
  groups = tf.concat(groups, axis=0)
  return cashflows.yields_from_pv(
      bond_cashflows,
      bond_cashflow_times,
      present_values,
      groups=groups,
      name=name) 
开发者ID:google,项目名称:tf-quant-finance,代码行数:20,代码来源:bond_curve.py

示例12: _apply_sequence_to_tensor_op

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import concat [as 别名]
def _apply_sequence_to_tensor_op(cls, op_fn, tensor_wrappers):
    """Applies given sequence-to-tensor op.

    This method is used for implementing ops that take a sequence of tensors and
    return a new tensor, such as tf.concat and tf.stack. Implementing wrappers
    should apply `op_fn` to the backing tensor(s) and return an new wrapper
    instance with the combined backing tensor.

    Args:
     op_fn: Callable that applies sequence-to-tensor op to the given sequence
       of Tensors. E.g. applies tf.concat.
     tensor_wrappers: a sequence of tensor wrappers to be transformed. All
       elements have the type of the implementing TensorWrapper class.

    Returns:
      A TensorWrapper instance with combined backing tensor(s).
    """
    raise NotImplementedError() 
开发者ID:google,项目名称:tf-quant-finance,代码行数:20,代码来源:tensor_wrapper.py

示例13: _reshape_inner_dims

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import concat [as 别名]
def _reshape_inner_dims(
    tensor: tf.Tensor,
    shape: tf.TensorShape,
    new_shape: tf.TensorShape) -> tf.Tensor:
  """Reshapes tensor to: shape(tensor)[:-len(shape)] + new_shape."""
  tensor_shape = tf.shape(tensor)
  ndims = shape.rank
  tensor.shape[-ndims:].assert_is_compatible_with(shape)
  new_shape_inner_tensor = tf.cast(
      [-1 if d is None else d for d in new_shape.as_list()], tf.int64)
  new_shape_outer_tensor = tf.cast(
      tensor_shape[:-ndims], tf.int64)
  full_new_shape = tf.concat(
      (new_shape_outer_tensor, new_shape_inner_tensor), axis=0)
  new_tensor = tf.reshape(tensor, full_new_shape)
  new_tensor.set_shape(tensor.shape[:-ndims] + new_shape)
  return new_tensor 
开发者ID:tensorflow,项目名称:agents,代码行数:19,代码来源:inner_reshape.py

示例14: _get_bi_lstm_encoder

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import concat [as 别名]
def _get_bi_lstm_encoder(self, num_hidden_layers, hidden_dim):
    """Get Bi-LSTM encoder.

    Args:
      num_hidden_layers: Number of stacked layers.
      hidden_dim: The hidden size of LSTM.

    Returns:
      A list of 2N+1 elements. The first element is output of all timesteps
        and the others are LSTM state. The first N are forward states and the
        last N are backward states.
    """
    self._cells = []
    for layer_id in range(num_hidden_layers):

      self._cells.append(
          tf.keras.layers.LSTMCell(
              hidden_dim, name='lstm_layer_{}'.format(layer_id)))

    self._cells_rnn = tf.keras.layers.RNN(
        self._cells, return_sequences=True, return_state=True)
    return tf.keras.layers.Bidirectional(self._cells_rnn, merge_mode='concat') 
开发者ID:google-research,项目名称:valan,代码行数:24,代码来源:instruction_encoder.py

示例15: _get_initial_state

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import concat [as 别名]
def _get_initial_state(self, observation, batch_size):
    text_token_ids = observation[constants.INS_TOKEN_IDS]
    text_enc_outputs, final_state = self._instruction_encoder(text_token_ids)
    if self._ndh_instruction_encoder is not None:
      ndh_text_enc_outputs, ndh_final_state = self._ndh_instruction_encoder(
          text_token_ids)
      mask = tf.equal(observation[constants.PROBLEM_TYPE],
                      constants.PROBLEM_VLN)
      text_enc_outputs = tf.nest.map_structure(
          lambda x, y: tf.compat.v1.where(mask, x, y), text_enc_outputs,
          ndh_text_enc_outputs)
      final_state = tf.nest.map_structure(
          lambda x, y: tf.compat.v1.where(mask, x, y), final_state,
          ndh_final_state)

    if self._ins_classifier is not None:
      # Concatenate all hidden layers' state vectors. Use state.h
      ins_classifier_logits = self._ins_classifier(
          tf.concat([s[0] for s in final_state], axis=1))
    else:
      ins_classifier_logits = tf.zeros(shape=(batch_size, 2))
    return (final_state, text_enc_outputs, ins_classifier_logits) 
开发者ID:google-research,项目名称:valan,代码行数:24,代码来源:mt_agent.py


注:本文中的tensorflow.compat.v2.concat方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。