当前位置: 首页>>代码示例>>Python>>正文


Python v2.cast方法代码示例

本文整理汇总了Python中tensorflow.compat.v2.cast方法的典型用法代码示例。如果您正苦于以下问题:Python v2.cast方法的具体用法?Python v2.cast怎么用?Python v2.cast使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.compat.v2的用法示例。


在下文中一共展示了v2.cast方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: __init__

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import cast [as 别名]
def __init__(self, hidden_layers, input_size=784, num_classes=10):
    """Initializes the neural network.

    Args:
      hidden_layers: List of ints specifying the sizes of hidden layers. Could
        be empty.
      input_size: Length of the input array. The network receives the input
        image as a flattened 1-d array. Defaults to 784(28*28), the default
        image size for MNIST.
      num_classes: The number of output classes. Defaults to 10.
    """
    hidden_layers = [input_size] + hidden_layers + [num_classes]
    self.weights = []
    self.biases = []
    for i in range(len(hidden_layers) - 1):
      # TODO(srbs): This is manually cast to float32 to avoid the cast in
      # np.dot since backprop fails for tf.cast op.
      self.weights.append(
          np.array(
              np.random.randn(hidden_layers[i + 1], hidden_layers[i]),
              copy=False,
              dtype=float32))
      self.biases.append(
          np.array(
              np.random.randn(hidden_layers[i + 1]), copy=False, dtype=float32)) 
开发者ID:google,项目名称:trax,代码行数:27,代码来源:model.py

示例2: _key2seed

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import cast [as 别名]
def _key2seed(a):
  """Converts an RNG key to an RNG seed.

  Args:
    a: an RNG key, an ndarray of shape [] and dtype `np.int64`.

  Returns:
    an RNG seed, a tensor of shape [2] and dtype `tf.int32`.
  """

  def int64_to_int32s(a):
    """Converts an int64 tensor of shape [] to an int32 tensor of shape [2]."""
    a = tf.cast(a, tf.uint64)
    fst = tf.cast(a, tf.uint32)
    snd = tf.cast(
        tf.bitwise.right_shift(a, tf.constant(32, tf.uint64)), tf.uint32)
    a = [fst, snd]
    a = tf.nest.map_structure(lambda x: tf.cast(x, tf.int32), a)
    a = tf.stack(a)
    return a

  return int64_to_int32s(a.data) 
开发者ID:google,项目名称:trax,代码行数:24,代码来源:extensions.py

示例3: _seed2key

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import cast [as 别名]
def _seed2key(a):
  """Converts an RNG seed to an RNG key.

  Args:
    a: an RNG seed, a tensor of shape [2] and dtype `tf.int32`.

  Returns:
    an RNG key, an ndarray of shape [] and dtype `np.int64`.
  """

  def int32s_to_int64(a):
    """Converts an int32 tensor of shape [2] to an int64 tensor of shape []."""
    a = tf.bitwise.bitwise_or(
        tf.cast(a[0], tf.uint64),
        tf.bitwise.left_shift(
            tf.cast(a[1], tf.uint64), tf.constant(32, tf.uint64)))
    a = tf.cast(a, tf.int64)
    return a

  return tf_np.asarray(int32s_to_int64(a)) 
开发者ID:google,项目名称:trax,代码行数:22,代码来源:extensions.py

示例4: around

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import cast [as 别名]
def around(a, decimals=0):  # pylint: disable=missing-docstring
  a = asarray(a)
  dtype = a.dtype
  factor = math.pow(10, decimals)
  if np.issubdtype(dtype, np.inexact):
    factor = tf.cast(factor, dtype)
  else:
    # Use float as the working dtype when a.dtype is exact (e.g. integer),
    # because `decimals` can be negative.
    float_dtype = dtypes.default_float_type()
    a = a.astype(float_dtype).data
    factor = tf.cast(factor, float_dtype)
  a = tf.multiply(a, factor)
  a = tf.round(a)
  a = tf.math.divide(a, factor)
  return utils.tensor_to_ndarray(a).astype(dtype) 
开发者ID:google,项目名称:trax,代码行数:18,代码来源:array_ops.py

示例5: tri

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import cast [as 别名]
def tri(N, M=None, k=0, dtype=None):  # pylint: disable=invalid-name,missing-docstring
  M = M if M is not None else N
  if dtype is not None:
    dtype = utils.result_type(dtype)
  else:
    dtype = dtypes.default_float_type()

  if k < 0:
    lower = -k - 1
    if lower > N:
      r = tf.zeros([N, M], dtype)
    else:
      # Keep as tf bool, since we create an upper triangular matrix and invert
      # it.
      o = tf.ones([N, M], dtype=tf.bool)
      r = tf.cast(tf.math.logical_not(tf.linalg.band_part(o, lower, -1)), dtype)
  else:
    o = tf.ones([N, M], dtype)
    if k > M:
      r = o
    else:
      r = tf.linalg.band_part(o, -1, k)
  return utils.tensor_to_ndarray(r) 
开发者ID:google,项目名称:trax,代码行数:25,代码来源:array_ops.py

示例6: true_divide

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import cast [as 别名]
def true_divide(x1, x2):
  def _avoid_float64(x1, x2):
    if x1.dtype == x2.dtype and x1.dtype in (tf.int32, tf.int64):
      x1 = tf.cast(x1, dtype=tf.float32)
      x2 = tf.cast(x2, dtype=tf.float32)
    return x1, x2

  def f(x1, x2):
    if x1.dtype == tf.bool:
      assert x2.dtype == tf.bool
      float_ = dtypes.default_float_type()
      x1 = tf.cast(x1, float_)
      x2 = tf.cast(x2, float_)
    if not dtypes.is_allow_float64():
      # tf.math.truediv in Python3 produces float64 when both inputs are int32
      # or int64. We want to avoid that when is_allow_float64() is False.
      x1, x2 = _avoid_float64(x1, x2)
    return tf.math.truediv(x1, x2)
  return _bin_op(f, x1, x2) 
开发者ID:google,项目名称:trax,代码行数:21,代码来源:math_ops.py

示例7: _scalar

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import cast [as 别名]
def _scalar(tf_fn, x, promote_to_float=False):
  """Computes the tf_fn(x) for each element in `x`.

  Args:
    tf_fn: function that takes a single Tensor argument.
    x: array_like. Could be an ndarray, a Tensor or any object that can
      be converted to a Tensor using `tf.convert_to_tensor`.
    promote_to_float: whether to cast the argument to a float dtype
      (`dtypes.default_float_type`) if it is not already.

  Returns:
    An ndarray with the same shape as `x`. The default output dtype is
    determined by `dtypes.default_float_type`, unless x is an ndarray with a
    floating point type, in which case the output type is same as x.dtype.
  """
  x = array_ops.asarray(x)
  if promote_to_float and not np.issubdtype(x.dtype, np.inexact):
    x = x.astype(dtypes.default_float_type())
  return utils.tensor_to_ndarray(tf_fn(x.data)) 
开发者ID:google,项目名称:trax,代码行数:21,代码来源:math_ops.py

示例8: update_state

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import cast [as 别名]
def update_state(self, y_true, y_pred, sample_weight=None):
    """Accumulates metric statistics.

    `y_true` and `y_pred` should have the same shape.

    Args:
      y_true: The ground truth values.
      y_pred: The predicted values.
      sample_weight: Optional weighting of each example. Defaults to 1. Can be a
        `Tensor` whose rank is either 0, or the same rank as `y_true`, and must
        be broadcastable to `y_true`.

    Returns:
      Update op.
    """
    y_true = tf.cast(y_true, self._dtype)
    y_pred = tf.cast(y_pred, self._dtype)

    per_list_metric_val, per_list_metric_weights = self._metric.compute(
        y_true, y_pred, sample_weight)
    return super(_RankingMetric, self).update_state(
        per_list_metric_val, sample_weight=per_list_metric_weights) 
开发者ID:tensorflow,项目名称:ranking,代码行数:24,代码来源:metrics.py

示例9: _get_payoff_fn

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import cast [as 别名]
def _get_payoff_fn(strikes, is_call_options):
  """Constructs the payoff functions."""
  option_signs = tf.cast(is_call_options, dtype=strikes.dtype) * 2 - 1

  def payoff(spots):
    """Computes payff for the specified options given the spot grid.

    Args:
      spots: Tensor of shape [batch_size, grid_size, 1]. The spot values at some
        time.

    Returns:
      Payoffs for exercise at the specified strikes.
    """
    return tf.nn.relu((spots - strikes) * option_signs)

  return payoff 
开发者ID:google,项目名称:tf-quant-finance,代码行数:19,代码来源:crr_binomial_tree.py

示例10: test_multiple_state_vars

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import cast [as 别名]
def test_multiple_state_vars(self):
    x = tf.constant([3.0, 4.0])
    y = tf.constant([5.0, 6.0])
    z = tf.constant([7.0, 8.0])
    alpha = tf.constant(2.0)
    beta = tf.constant(1.0)

    with tf.GradientTape(persistent=True) as tape:
      tape.watch([alpha, beta])
      def body(i, state):
        x, y, z = state
        k = tf.cast(i + 1, tf.float32)
        return [x * alpha - beta, y * k * alpha * beta, z * beta + x]
      out = for_loop(body, [x, y, z], [alpha, beta], 3)

    with self.subTest("independent_vars"):
      grad = tape.gradient(out[1], alpha)
      self.assertAllEqual(792, grad)
    with self.subTest("dependent_vars"):
      grad = tape.gradient(out[2], beta)
      self.assertAllEqual(63, grad) 
开发者ID:google,项目名称:tf-quant-finance,代码行数:23,代码来源:custom_loops_test.py

示例11: test_batching

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import cast [as 别名]
def test_batching(self):
    x = tf.constant([[3.0, 4.0], [30.0, 40.0]])
    y = tf.constant([[5.0, 6.0], [50.0, 60.0]])
    z = tf.constant([[7.0, 8.0], [70.0, 80.0]])
    alpha = tf.constant(2.0)
    beta = tf.constant(1.0)

    with tf.GradientTape(persistent=True) as tape:
      tape.watch([alpha, beta])
      def body(i, state):
        x, y, z = state
        k = tf.cast(i + 1, tf.float32)
        return [x * alpha - beta, y * k * alpha * beta, z * beta + x]
      out = for_loop(body, [x, y, z], [alpha, beta], 3)
    with self.subTest("independent_vars"):
      grad = tape.gradient(out[1], alpha)
      self.assertAllEqual(8712, grad)
    with self.subTest("dependent_vars"):
      grad = tape.gradient(out[2], beta)
      self.assertAllEqual(783, grad) 
开发者ID:google,项目名称:tf-quant-finance,代码行数:22,代码来源:custom_loops_test.py

示例12: _updated_cashflow

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import cast [as 别名]
def _updated_cashflow(num_times, exercise_index, exercise_value,
                      expected_continuation, cashflow):
  """Revises the cashflow tensor where options will be exercised earlier."""
  do_exercise_bool = exercise_value > expected_continuation
  do_exercise = tf.cast(do_exercise_bool, exercise_value.dtype)
  # Shape [num_samples, payoff_dim]
  scaled_do_exercise = tf.where(do_exercise_bool, exercise_value,
                                tf.zeros_like(exercise_value))
  # This picks out the samples where we now wish to exercise.
  # Shape [num_samples, payoff_dim, 1]
  new_samp_masked = tf.expand_dims(scaled_do_exercise, axis=2)
  # This should be one on the current time step and zero otherwise.
  # This is an array with nonzero entries showing newly exercised payoffs.
  zeros = tf.zeros_like(cashflow)
  mask = tf.equal(tf.range(0, num_times), exercise_index - 1)
  new_cash = tf.where(mask, new_samp_masked, zeros)
  # Has shape [num_samples, payoff_dim, 1]
  old_mask = tf.expand_dims(1 - do_exercise, axis=2)
  mask = tf.range(0, num_times) >= exercise_index
  old_mask = tf.where(mask, old_mask, zeros)
  # Shape [num_samples, payoff_dim, num_times]
  old_cash = old_mask * cashflow
  return new_cash + old_cash 
开发者ID:google,项目名称:tf-quant-finance,代码行数:25,代码来源:lsm_v2.py

示例13: _euler_step

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import cast [as 别名]
def _euler_step(*, i, written_count, current_state, result,
                drift_fn, volatility_fn, wiener_mean,
                num_samples, times, dt, sqrt_dt, keep_mask,
                random_type, seed, normal_draws):
  """Performs one step of Euler scheme."""
  current_time = times[i + 1]
  written_count = tf.cast(written_count, tf.int32)
  if normal_draws is not None:
    dw = normal_draws[i]
  else:
    dw = random.mv_normal_sample(
        (num_samples,), mean=wiener_mean, random_type=random_type,
        seed=seed)
  dw = dw * sqrt_dt[i]
  dt_inc = dt[i] * drift_fn(current_time, current_state)  # pylint: disable=not-callable
  dw_inc = tf.linalg.matvec(volatility_fn(current_time, current_state), dw)  # pylint: disable=not-callable
  next_state = current_state + dt_inc + dw_inc
  result = utils.maybe_update_along_axis(
      tensor=result,
      do_update=keep_mask[i + 1],
      ind=written_count,
      axis=1,
      new_tensor=tf.expand_dims(next_state, axis=1))
  written_count += tf.cast(keep_mask[i + 1], dtype=tf.int32)
  return i + 1, written_count, next_state, result 
开发者ID:google,项目名称:tf-quant-finance,代码行数:27,代码来源:euler_sampling.py

示例14: __init__

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import cast [as 别名]
def __init__(self, weekend_mask=None, holidays=None):
    """Initializer.

    Args:
      weekend_mask: Boolean `Tensor` of 7 elements one for each day of the week
        starting with Monday at index 0. A `True` value indicates the day is
        considered a weekend day and a `False` value implies a week day.
        Default value: None which means no weekends are applied.
      holidays: Defines the holidays that are added to the weekends defined by
        `weekend_mask`. An instance of `dates.DateTensor` or an object
        convertible to `DateTensor`.
        Default value: None which means no holidays other than those implied by
          the weekends (if any).
    """
    if weekend_mask is not None:
      weekend_mask = tf.cast(weekend_mask, dtype=tf.bool)
    if holidays is not None:
      holidays = dt.convert_to_date_tensor(holidays).ordinal()
    self._to_biz_space, self._from_biz_space = hol.business_day_mappers(
        weekend_mask=weekend_mask, holidays=holidays) 
开发者ID:google,项目名称:tf-quant-finance,代码行数:22,代码来源:unbounded_holiday_calendar.py

示例15: _decode_and_center_crop

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import cast [as 别名]
def _decode_and_center_crop(image_bytes):
  """Crops to center of image with padding then scales image size."""
  shape = tf.image.extract_jpeg_shape(image_bytes)
  image_height = shape[0]
  image_width = shape[1]

  padded_center_crop_size = tf.cast(
      ((_IMAGE_SIZE / (_IMAGE_SIZE + _CROP_PADDING)) *
       tf.cast(tf.minimum(image_height, image_width), tf.float32)), tf.int32)

  offset_height = ((image_height - padded_center_crop_size) + 1) // 2
  offset_width = ((image_width - padded_center_crop_size) + 1) // 2
  crop_window = tf.stack([
      offset_height, offset_width, padded_center_crop_size,
      padded_center_crop_size
  ])
  image = tf.image.decode_and_crop_jpeg(image_bytes, crop_window, channels=3)
  image = tf.image.resize([image], [_IMAGE_SIZE, _IMAGE_SIZE],
                          method=tf.image.ResizeMethod.BICUBIC)[0]
  image = tf.cast(image, tf.int32)

  return image 
开发者ID:tensorflow,项目名称:datasets,代码行数:24,代码来源:imagenet2012_corrupted.py


注:本文中的tensorflow.compat.v2.cast方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。