当前位置: 首页>>代码示例>>Python>>正文


Python v2.broadcast_to方法代码示例

本文整理汇总了Python中tensorflow.compat.v2.broadcast_to方法的典型用法代码示例。如果您正苦于以下问题:Python v2.broadcast_to方法的具体用法?Python v2.broadcast_to怎么用?Python v2.broadcast_to使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.compat.v2的用法示例。


在下文中一共展示了v2.broadcast_to方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: full_like

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import broadcast_to [as 别名]
def full_like(a, fill_value, dtype=None, order='K', subok=True, shape=None):  # pylint: disable=missing-docstring,redefined-outer-name
  """order, subok and shape arguments mustn't be changed."""
  if order != 'K':
    raise ValueError('Non-standard orders are not supported.')
  if not subok:
    raise ValueError('subok being False is not supported.')
  if shape:
    raise ValueError('Overriding the shape is not supported.')

  a = asarray(a).data
  dtype = dtype or utils.result_type(a)
  fill_value = asarray(fill_value, dtype=dtype)
  return arrays_lib.tensor_to_ndarray(
      tf.broadcast_to(fill_value.data, tf.shape(a)))


# TODO(wangpeng): investigate whether we can make `copy` default to False.
# TODO(wangpeng): utils.np_doc can't handle np.array because np.array is a
#   builtin function. Make utils.np_doc support builtin functions. 
开发者ID:google,项目名称:trax,代码行数:21,代码来源:array_ops.py

示例2: tril

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import broadcast_to [as 别名]
def tril(m, k=0):  # pylint: disable=missing-docstring
  m = asarray(m).data
  m_shape = m.shape.as_list()

  if len(m_shape) < 2:
    raise ValueError('Argument to tril must have rank at least 2')

  if m_shape[-1] is None or m_shape[-2] is None:
    raise ValueError('Currently, the last two dimensions of the input array '
                     'need to be known.')

  z = tf.constant(0, m.dtype)

  mask = tri(*m_shape[-2:], k=k, dtype=bool)
  return utils.tensor_to_ndarray(
      tf.where(tf.broadcast_to(mask, tf.shape(m)), m, z)) 
开发者ID:google,项目名称:trax,代码行数:18,代码来源:array_ops.py

示例3: triu

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import broadcast_to [as 别名]
def triu(m, k=0):  # pylint: disable=missing-docstring
  m = asarray(m).data
  m_shape = m.shape.as_list()

  if len(m_shape) < 2:
    raise ValueError('Argument to triu must have rank at least 2')

  if m_shape[-1] is None or m_shape[-2] is None:
    raise ValueError('Currently, the last two dimensions of the input array '
                     'need to be known.')

  z = tf.constant(0, m.dtype)

  mask = tri(*m_shape[-2:], k=k - 1, dtype=bool)
  return utils.tensor_to_ndarray(
      tf.where(tf.broadcast_to(mask, tf.shape(m)), z, m)) 
开发者ID:google,项目名称:trax,代码行数:18,代码来源:array_ops.py

示例4: _tf_gcd

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import broadcast_to [as 别名]
def _tf_gcd(x1, x2):
  def _gcd_cond_fn(x1, x2):
    return tf.reduce_any(x2 != 0)
  def _gcd_body_fn(x1, x2):
    # tf.math.mod will raise an error when any element of x2 is 0. To avoid
    # that, we change those zeros to ones. Their values don't matter because
    # they won't be used.
    x2_safe = tf.where(x2 != 0, x2, tf.constant(1, x2.dtype))
    x1, x2 = (tf.where(x2 != 0, x2, x1),
              tf.where(x2 != 0, tf.math.mod(x1, x2_safe),
                       tf.constant(0, x2.dtype)))
    return (tf.where(x1 < x2, x2, x1), tf.where(x1 < x2, x1, x2))
  if (not np.issubdtype(x1.dtype.as_numpy_dtype, np.integer) or
      not np.issubdtype(x2.dtype.as_numpy_dtype, np.integer)):
    raise ValueError("Arguments to gcd must be integers.")
  shape = tf.broadcast_static_shape(x1.shape, x2.shape)
  x1 = tf.broadcast_to(x1, shape)
  x2 = tf.broadcast_to(x2, shape)
  gcd, _ = tf.while_loop(_gcd_cond_fn, _gcd_body_fn,
                         (tf.math.abs(x1), tf.math.abs(x2)))
  return gcd 
开发者ID:google,项目名称:trax,代码行数:23,代码来源:math_ops.py

示例5: _batch_jacobian

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import broadcast_to [as 别名]
def _batch_jacobian(y, x, tape):
  """Computes a Jacobian w.r.t. last dimensions of y and x."""
  # y and x must have the same batch dimensions.
  # For input shapes (b, dy), (b, dx) yields shape (b, dy, dx).
  d = y.shape.as_list()[-1]
  if d is None:
    raise ValueError("Last dimension of state Tensors must be known.")
  grads = []
  for i in range(d):
    w = tf.broadcast_to(tf.one_hot(i, d, dtype=y.dtype), y.shape)
    # We must use tf.UnconnectedGradients.ZERO here and below, because some
    # state components may legitimately not depend on each other or some of the
    # params.
    grad = tape.gradient(y, x, output_gradients=w,
                         unconnected_gradients=tf.UnconnectedGradients.ZERO)
    grads.append(grad)
  return tf.stack(grads, axis=-2) 
开发者ID:google,项目名称:tf-quant-finance,代码行数:19,代码来源:custom_loops.py

示例6: _conditional_variance_x

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import broadcast_to [as 别名]
def _conditional_variance_x(self, t, mr_t, sigma_t):
    """Computes the variance of x(t), see [1], Eq. 10.41."""
    t = tf.repeat(tf.expand_dims(t, axis=0), self._dim, axis=0)
    var_x_between_vol_knots = self._variance_int(self._padded_knots,
                                                 self._jump_locations,
                                                 self._jump_values_vol,
                                                 self._jump_values_mr)
    varx_at_vol_knots = tf.concat(
        [self._zero_padding,
         _cumsum_using_matvec(var_x_between_vol_knots)],
        axis=1)

    time_index = tf.searchsorted(self._jump_locations, t)
    vn = tf.concat(
        [self._zero_padding,
         self._jump_locations], axis=1)

    var_x_t = self._variance_int(
        tf.gather(vn, time_index, batch_dims=1), t, sigma_t, mr_t)
    var_x_t = var_x_t + tf.gather(varx_at_vol_knots, time_index, batch_dims=1)

    var_x_t = (var_x_t[:, 1:] - var_x_t[:, :-1]) * tf.math.exp(
        -2 * tf.broadcast_to(mr_t, t.shape)[:, 1:] * t[:, 1:])
    return var_x_t 
开发者ID:google,项目名称:tf-quant-finance,代码行数:26,代码来源:vector_hull_white.py

示例7: _prob

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import broadcast_to [as 别名]
def _prob(self, y):
    """Called by the base class to compute likelihoods."""
    # Convert to (channels, 1, batch) format by collapsing dimensions and then
    # commuting channels to front.
    y = tf.broadcast_to(
        y, tf.broadcast_dynamic_shape(tf.shape(y), self.batch_shape_tensor()))
    shape = tf.shape(y)
    y = tf.reshape(y, (-1, 1, self.batch_shape.num_elements()))
    y = tf.transpose(y, (2, 1, 0))

    # Evaluate densities.
    # We can use the special rule below to only compute differences in the left
    # tail of the sigmoid. This increases numerical stability: sigmoid(x) is 1
    # for large x, 0 for small x. Subtracting two numbers close to 0 can be done
    # with much higher precision than subtracting two numbers close to 1.
    lower = self._logits_cumulative(y - .5)
    upper = self._logits_cumulative(y + .5)
    # Flip signs if we can move more towards the left tail of the sigmoid.
    sign = tf.stop_gradient(-tf.math.sign(lower + upper))
    p = abs(tf.sigmoid(sign * upper) - tf.sigmoid(sign * lower))

    # Convert back to (broadcasted) input tensor shape.
    p = tf.transpose(p, (2, 1, 0))
    p = tf.reshape(p, shape)
    return p 
开发者ID:tensorflow,项目名称:compression,代码行数:27,代码来源:deep_factorized.py

示例8: full

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import broadcast_to [as 别名]
def full(shape, fill_value, dtype=None):  # pylint: disable=redefined-outer-name
  """Returns an array with given shape and dtype filled with `fill_value`.

  Args:
    shape: A valid shape object. Could be a native python object or an object
       of type ndarray, numpy.ndarray or tf.TensorShape.
    fill_value: array_like. Could be an ndarray, a Tensor or any object that can
      be converted to a Tensor using `tf.convert_to_tensor`.
    dtype: Optional, defaults to dtype of the `fill_value`. The type of the
      resulting ndarray. Could be a python type, a NumPy type or a TensorFlow
      `DType`.

  Returns:
    An ndarray.

  Raises:
    ValueError: if `fill_value` can not be broadcast to shape `shape`.
  """
  fill_value = asarray(fill_value, dtype=dtype)
  if utils.isscalar(shape):
    shape = tf.reshape(shape, [1])
  return arrays_lib.tensor_to_ndarray(tf.broadcast_to(fill_value.data, shape))


# Using doc only here since np full_like signature doesn't seem to have the
# shape argument (even though it exists in the documentation online). 
开发者ID:google,项目名称:trax,代码行数:28,代码来源:array_ops.py

示例9: broadcast_to

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import broadcast_to [as 别名]
def broadcast_to(array, shape):  # pylint: disable=redefined-outer-name
  return full(shape, array) 
开发者ID:google,项目名称:trax,代码行数:4,代码来源:array_ops.py

示例10: polyval

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import broadcast_to [as 别名]
def polyval(p, x):
  def f(p, x):
    if p.shape.rank == 0:
      p = tf.reshape(p, [1])
    p = tf.unstack(p)
    # TODO(wangpeng): Make tf version take a tensor for p instead of a list.
    y = tf.math.polyval(p, x)
    # If the polynomial is 0-order, numpy requires the result to be broadcast to
    # `x`'s shape.
    if len(p) == 1:
      y = tf.broadcast_to(y, x.shape)
    return y
  return _bin_op(f, p, x) 
开发者ID:google,项目名称:trax,代码行数:15,代码来源:math_ops.py

示例11: _prepare_pde_coeff

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import broadcast_to [as 别名]
def _prepare_pde_coeff(raw_coeff, value_grid):
  # Converts values received from second_order_coeff_fn and similar Callables
  # into a format usable further down in the pipeline.
  if raw_coeff is None:
    return None
  dtype = value_grid.dtype
  coeff = tf.convert_to_tensor(raw_coeff, dtype=dtype)
  coeff = tf.broadcast_to(coeff, tf.shape(value_grid))
  return coeff 
开发者ID:google,项目名称:tf-quant-finance,代码行数:11,代码来源:multidim_parabolic_equation_stepper.py

示例12: _prepare_boundary_conditions

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import broadcast_to [as 别名]
def _prepare_boundary_conditions(boundary_tensor, value_grid, batch_rank, dim):
  """Prepares values received from boundary_condition callables."""
  if boundary_tensor is None:
    return None
  boundary_tensor = tf.convert_to_tensor(boundary_tensor, value_grid.dtype)
  # Broadcast to the shape of the boundary: it is the shape of value grid with
  # one dimension removed.
  dim_to_remove = batch_rank + dim
  broadcast_shape = []
  # Shape slicing+concatenation seems error-prone, so let's do it simply.
  for i, size in enumerate(value_grid.shape):
    if i != dim_to_remove:
      broadcast_shape.append(size)
  return tf.broadcast_to(boundary_tensor, broadcast_shape) 
开发者ID:google,项目名称:tf-quant-finance,代码行数:16,代码来源:multidim_parabolic_equation_stepper.py

示例13: _prepare_pde_coeffs

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import broadcast_to [as 别名]
def _prepare_pde_coeffs(raw_coeffs, value_grid):
  """Prepares values received from second_order_coeff_fn and similar."""
  if raw_coeffs is None:
    return None
  dtype = value_grid.dtype
  coeffs = tf.convert_to_tensor(raw_coeffs, dtype=dtype)

  broadcast_shape = tf.shape(value_grid)
  coeffs = tf.broadcast_to(coeffs, broadcast_shape)
  return coeffs 
开发者ID:google,项目名称:tf-quant-finance,代码行数:12,代码来源:parabolic_equation_stepper.py

示例14: _prepare_boundary_conditions

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import broadcast_to [as 别名]
def _prepare_boundary_conditions(boundary_tensor, value_grid):
  """Prepares values received from boundary_condition callables."""
  if boundary_tensor is None:
    return None
  boundary_tensor = tf.convert_to_tensor(boundary_tensor, value_grid.dtype)
  # Broadcast to batch dimensions.
  broadcast_shape = tf.shape(value_grid)[:-1]
  return tf.broadcast_to(boundary_tensor, broadcast_shape) 
开发者ID:google,项目名称:tf-quant-finance,代码行数:10,代码来源:parabolic_equation_stepper.py

示例15: _try_broadcast_to

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import broadcast_to [as 别名]
def _try_broadcast_to(x, batch_shape, name):
  """Broadcasts batch shape of `x` to a `batch_shape` if possible."""
  batch_shape_x = x.shape.as_list()[:-1]
  if batch_shape_x != batch_shape:
    try:
      np.broadcast_to(np.zeros(batch_shape_x), batch_shape)
    except ValueError:
      raise ValueError('Batch shapes of `{2}` should be broadcastable with {0} '
                       'but it is {1} instead'.format(
                           batch_shape, batch_shape_x, name))
    return tf.broadcast_to(x, batch_shape + x.shape[-1:])
  return x 
开发者ID:google,项目名称:tf-quant-finance,代码行数:14,代码来源:piecewise.py


注:本文中的tensorflow.compat.v2.broadcast_to方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。