本文整理汇总了Python中tensorflow.compat.v2.bool方法的典型用法代码示例。如果您正苦于以下问题:Python v2.bool方法的具体用法?Python v2.bool怎么用?Python v2.bool使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类tensorflow.compat.v2
的用法示例。
在下文中一共展示了v2.bool方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: all
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import bool [as 别名]
def all(a, axis=None, keepdims=None): # pylint: disable=redefined-builtin
"""Whether all array elements or those along an axis evaluate to true.
Casts the array to bool type if it is not already and uses `tf.reduce_all` to
compute the result.
Args:
a: array_like. Could be an ndarray, a Tensor or any object that can
be converted to a Tensor using `tf.convert_to_tensor`.
axis: Optional. Could be an int or a tuple of integers. If not specified,
the reduction is performed over all array indices.
keepdims: If true, retains reduced dimensions with length 1.
Returns:
An ndarray. Note that unlike NumPy this does not return a scalar bool if
`axis` is None.
"""
a = asarray(a, dtype=bool)
return utils.tensor_to_ndarray(
tf.reduce_all(input_tensor=a.data, axis=axis, keepdims=keepdims))
示例2: any
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import bool [as 别名]
def any(a, axis=None, keepdims=None): # pylint: disable=redefined-builtin
"""Whether any element in the entire array or in an axis evaluates to true.
Casts the array to bool type if it is not already and uses `tf.reduce_any` to
compute the result.
Args:
a: array_like. Could be an ndarray, a Tensor or any object that can
be converted to a Tensor using `tf.convert_to_tensor`.
axis: Optional. Could be an int or a tuple of integers. If not specified,
the reduction is performed over all array indices.
keepdims: If true, retains reduced dimensions with length 1.
Returns:
An ndarray. Note that unlike NumPy this does not return a scalar bool if
`axis` is None.
"""
a = asarray(a, dtype=bool)
return utils.tensor_to_ndarray(
tf.reduce_any(input_tensor=a.data, axis=axis, keepdims=keepdims))
示例3: tril
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import bool [as 别名]
def tril(m, k=0): # pylint: disable=missing-docstring
m = asarray(m).data
m_shape = m.shape.as_list()
if len(m_shape) < 2:
raise ValueError('Argument to tril must have rank at least 2')
if m_shape[-1] is None or m_shape[-2] is None:
raise ValueError('Currently, the last two dimensions of the input array '
'need to be known.')
z = tf.constant(0, m.dtype)
mask = tri(*m_shape[-2:], k=k, dtype=bool)
return utils.tensor_to_ndarray(
tf.where(tf.broadcast_to(mask, tf.shape(m)), m, z))
示例4: triu
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import bool [as 别名]
def triu(m, k=0): # pylint: disable=missing-docstring
m = asarray(m).data
m_shape = m.shape.as_list()
if len(m_shape) < 2:
raise ValueError('Argument to triu must have rank at least 2')
if m_shape[-1] is None or m_shape[-2] is None:
raise ValueError('Currently, the last two dimensions of the input array '
'need to be known.')
z = tf.constant(0, m.dtype)
mask = tri(*m_shape[-2:], k=k - 1, dtype=bool)
return utils.tensor_to_ndarray(
tf.where(tf.broadcast_to(mask, tf.shape(m)), z, m))
示例5: diff
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import bool [as 别名]
def diff(a, n=1, axis=-1):
def f(a):
nd = a.shape.rank
if (axis + nd if axis < 0 else axis) >= nd:
raise ValueError("axis %s is out of bounds for array of dimension %s" %
(axis, nd))
if n < 0:
raise ValueError("order must be non-negative but got %s" % n)
slice1 = [slice(None)] * nd
slice2 = [slice(None)] * nd
slice1[axis] = slice(1, None)
slice2[axis] = slice(None, -1)
slice1 = tuple(slice1)
slice2 = tuple(slice2)
op = tf.not_equal if a.dtype == tf.bool else tf.subtract
for _ in range(n):
a = op(a[slice1], a[slice2])
return a
return _scalar(f, a)
示例6: __init__
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import bool [as 别名]
def __init__(self,
shift,
validate_args=False,
name='shift'):
"""Instantiates the `Shift` bijector which computes `Y = g(X; shift) = X + shift`
where `shift` is a numeric `Tensor`.
Args:
shift: Floating-point `Tensor`.
validate_args: Python `bool` indicating whether arguments should be
checked for correctness.
name: Python `str` name given to ops managed by this object.
"""
with tf.name_scope(name) as name:
dtype = dtype_util.common_dtype([shift], dtype_hint=tf.float32)
self._shift = tensor_util.convert_nonref_to_tensor(shift, dtype=dtype, name='shift')
super(Shift, self).__init__(
forward_min_event_ndims=0,
is_constant_jacobian=True,
dtype=dtype,
validate_args=validate_args,
name=name
)
示例7: transform
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import bool [as 别名]
def transform(self, features=None, training=None, mask=None):
"""Transforms the features into dense context features and example features.
The user can overwrite this function for custom transformations.
Mask is provided as an argument so that inherited models can have access
to it for custom feature transformations, without modifying
`call` explicitly.
Args:
features: (dict) with a mix of context (2D) and example features (3D).
training: (bool) whether in train or inference mode.
mask: (tf.Tensor) Mask is a tensor of shape [batch_size, list_size], which
is True for a valid example and False for invalid one.
Returns:
context_features: (dict) context feature names to dense 2D tensors of
shape [batch_size, feature_dims].
example_features: (dict) example feature names to dense 3D tensors of
shape [batch_size, list_size, feature_dims].
"""
del mask
context_features, example_features = self._listwise_dense_layer(
inputs=features, training=training)
return context_features, example_features
示例8: compute_logits
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import bool [as 别名]
def compute_logits(self,
context_features=None,
example_features=None,
training=None,
mask=None):
"""Scores context and examples to return a score per document.
Args:
context_features: (dict) context feature names to 2D tensors of shape
[batch_size, feature_dims].
example_features: (dict) example feature names to 3D tensors of shape
[batch_size, list_size, feature_dims].
training: (bool) whether in train or inference mode.
mask: (tf.Tensor) Mask is a tensor of shape [batch_size, list_size], which
is True for a valid example and False for invalid one. If mask is None,
all entries are valid.
Returns:
(tf.Tensor) A score tensor of shape [batch_size, list_size].
"""
raise NotImplementedError('Calling an abstract method, '
'tfr.keras.RankingModel.compute_logits().')
示例9: call
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import bool [as 别名]
def call(self, inputs=None, training=None, mask=None):
"""Defines the forward pass for ranking model.
Args:
inputs: (dict) with a mix of context (2D) and example features (3D).
training: (bool) whether in train or inference mode.
mask: (tf.Tensor) Mask is a tensor of shape [batch_size, list_size], which
is True for a valid example and False for invalid one.
Returns:
(tf.Tensor) A score tensor of shape [batch_size, list_size].
"""
context_features, example_features = self.transform(
features=inputs, training=training, mask=mask)
logits = self.compute_logits(
context_features=context_features,
example_features=example_features,
training=training,
mask=mask)
return logits
示例10: _should_stop
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import bool [as 别名]
def _should_stop(state, stopping_policy_fn):
"""Indicates whether the overall Brent search should continue.
Args:
state: A Python `_BrentSearchState` namedtuple.
stopping_policy_fn: Python `callable` controlling the algorithm termination.
Returns:
A boolean value indicating whether the overall search should continue.
"""
return tf.convert_to_tensor(
stopping_policy_fn(state.finished), name="should_stop", dtype=tf.bool)
# This is a direct translation of the Brent root-finding method.
# Each operation is guarded by a call to `tf.where` to avoid performing
# unnecessary calculations.
示例11: __init__
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import bool [as 别名]
def __init__(self, weekend_mask=None, holidays=None):
"""Initializer.
Args:
weekend_mask: Boolean `Tensor` of 7 elements one for each day of the week
starting with Monday at index 0. A `True` value indicates the day is
considered a weekend day and a `False` value implies a week day.
Default value: None which means no weekends are applied.
holidays: Defines the holidays that are added to the weekends defined by
`weekend_mask`. An instance of `dates.DateTensor` or an object
convertible to `DateTensor`.
Default value: None which means no holidays other than those implied by
the weekends (if any).
"""
if weekend_mask is not None:
weekend_mask = tf.cast(weekend_mask, dtype=tf.bool)
if holidays is not None:
holidays = dt.convert_to_date_tensor(holidays).ordinal()
self._to_biz_space, self._from_biz_space = hol.business_day_mappers(
weekend_mask=weekend_mask, holidays=holidays)
示例12: _info
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import bool [as 别名]
def _info(self):
return tfds.core.DatasetInfo(
builder=self,
description=_DESCRIPTION,
features=tfds.features.FeaturesDict({
'ID': tfds.features.Text(),
'Text': tfds.features.Text(),
'Pronoun': tfds.features.Text(),
'Pronoun-offset': tf.int32,
'A': tfds.features.Text(),
'A-offset': tf.int32,
'A-coref': tf.bool,
'B': tfds.features.Text(),
'B-offset': tf.int32,
'B-coref': tf.bool,
'URL': tfds.features.Text()
}),
supervised_keys=None,
homepage='https://github.com/google-research-datasets/gap-coreference',
citation=_CITATION,
)
示例13: _info
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import bool [as 别名]
def _info(self):
return tfds.core.DatasetInfo(
builder=self,
description=_DESCRIPTION,
features=tfds.features.FeaturesDict({
'sentence_good': tfds.features.Text(),
'sentence_bad': tfds.features.Text(),
'field': tfds.features.Text(),
'linguistics_term': tfds.features.Text(),
'UID': tfds.features.Text(),
'simple_LM_method': tf.bool,
'one_prefix_method': tf.bool,
'two_prefix_method': tf.bool,
'lexically_identical': tf.bool,
'pair_id': tf.int32,
}),
supervised_keys=None,
# Homepage of the dataset for documentation
homepage=_PROJECT_URL,
citation=_CITATION,
)
示例14: _info
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import bool [as 别名]
def _info(self):
features = {
'image':
tfds.features.Image(encoding_format='jpeg'),
'image/filename':
tfds.features.Text(),
'faces':
tfds.features.Sequence({
'bbox': tfds.features.BBoxFeature(),
'blur': tf.uint8,
'expression': tf.bool,
'illumination': tf.bool,
'occlusion': tf.uint8,
'pose': tf.bool,
'invalid': tf.bool,
}),
}
return tfds.core.DatasetInfo(
builder=self,
description=_DESCRIPTION,
features=tfds.features.FeaturesDict(features),
homepage=_PROJECT_URL,
citation=_CITATION,
)
示例15: __init__
# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import bool [as 别名]
def __init__(self, state_space_size, unroll_length=1):
self._state_space_size = state_space_size
# Creates simple dynamics (T stands for transition):
# states = [0, 1, ... len(state_space_size - 1)] + [STOP]
# actions = [-1, 1]
# T(s, a) = s + a iff (s + a) is a valid state
# = STOP otherwise
self._action_space = [-1, 1]
self._current_state = None
self._env_spec = common.EnvOutput(
reward=tf.TensorSpec(shape=[unroll_length + 1], dtype=tf.float32),
done=tf.TensorSpec(shape=[unroll_length + 1], dtype=tf.bool),
observation={
'f1':
tf.TensorSpec(
shape=[unroll_length + 1, 4, 10], dtype=tf.float32),
'f2':
tf.TensorSpec(
shape=[unroll_length + 1, 7, 10, 2], dtype=tf.float32)
},
info=tf.TensorSpec(shape=[unroll_length + 1], dtype=tf.string))