当前位置: 首页>>代码示例>>Python>>正文


Python v2.Variable方法代码示例

本文整理汇总了Python中tensorflow.compat.v2.Variable方法的典型用法代码示例。如果您正苦于以下问题:Python v2.Variable方法的具体用法?Python v2.Variable怎么用?Python v2.Variable使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在tensorflow.compat.v2的用法示例。


在下文中一共展示了v2.Variable方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: build

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import Variable [as 别名]
def build(self, input_shape):
    with math_lib.use_backend("tf"):
      # Using `is` instead of `==` following Trax's practice
      if self._trax_layer.weights is base.EMPTY_WEIGHTS:
        sanitized_input_shape = math_lib.nested_map(
            functools.partial(_replace_none_batch, batch_size=self._batch_size),
            input_shape)
        weights, state = self._trax_layer.init(
            tensor_shapes_to_shape_dtypes(sanitized_input_shape, self.dtype),
            rng=self._initializer_rng)
      else:
        weights = self._trax_layer.weights
        state = self._trax_layer.state
      # Note: `weights` may contain `EMPTY_WEIGHTS`
      self._weights = math_lib.nested_map(
          functools.partial(tf.Variable, trainable=True), weights)
      self._state = math_lib.nested_map(
          functools.partial(tf.Variable, trainable=False), state)
      self._rng = tf.Variable(self._forward_rng_init, trainable=False)
    super(TraxKerasLayer, self).build(input_shape) 
开发者ID:google,项目名称:trax,代码行数:22,代码来源:trax2keras.py

示例2: from_config

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import Variable [as 别名]
def from_config(cls, config):
    """Instantiates an entropy model from a configuration dictionary.

    Arguments:
      config: A `dict`, typically the output of `get_config`.

    Returns:
      An entropy model.
    """
    self = super().from_config(config)
    with self.name_scope:
      # pylint:disable=protected-access
      if config["quantization_offset"]:
        zeros = tf.zeros(self.prior_shape, dtype=self.dtype)
        self._quantization_offset = tf.Variable(
            zeros, name="quantization_offset")
      else:
        self._quantization_offset = None
      # pylint:enable=protected-access
    return self 
开发者ID:tensorflow,项目名称:compression,代码行数:22,代码来源:continuous_batched.py

示例3: __init__

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import Variable [as 别名]
def __init__(self, config):
    """Initialize R2R Agent."""
    super(DiscriminatorAgent, self).__init__(name='discriminator_r2r')

    self._instruction_encoder = instruction_encoder.InstructionEncoder(
        num_hidden_layers=2,
        output_dim=256,
        pretrained_embed_path=config.pretrained_embed_path,
        oov_bucket_size=config.oov_bucket_size,
        vocab_size=config.vocab_size,
        word_embed_dim=config.word_embed_dim,
    )
    self._image_encoder = image_encoder.ImageEncoder(
        256, 512, num_hidden_layers=2)
    self.affine_a = tf.Variable(1.0, dtype=tf.float32, trainable=True)
    self.affine_b = tf.Variable(0.0, dtype=tf.float32, trainable=True) 
开发者ID:google-research,项目名称:valan,代码行数:18,代码来源:discriminator_agent.py

示例4: test_no_vars

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import Variable [as 别名]
def test_no_vars(self, target, c, type_):
    c = type_(c)
    self.assertFunctionMatchesEager(target, c, tf.Variable(0)) 
开发者ID:tensorflow,项目名称:autograph,代码行数:5,代码来源:cond_basic_test.py

示例5: test_while_no_vars

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import Variable [as 别名]
def test_while_no_vars(self, n, type_):
    n = type_(n)
    self.assertFunctionMatchesEager(while_no_vars, n, tf.Variable(0)) 
开发者ID:tensorflow,项目名称:autograph,代码行数:5,代码来源:loop_basic_test.py

示例6: test_for_no_vars

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import Variable [as 别名]
def test_for_no_vars(self, l, type_):
    l = type_(l)
    self.assertFunctionMatchesEager(for_no_vars, l, tf.Variable(0)) 
开发者ID:tensorflow,项目名称:autograph,代码行数:5,代码来源:loop_basic_test.py

示例7: test_for_no_vars_ds_iterator

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import Variable [as 别名]
def test_for_no_vars_ds_iterator(self, l):
    inputs_ = lambda: (iter(_int_dataset(l)), tf.Variable(0))
    self.assertFunctionMatchesEagerStatefulInput(for_no_vars, inputs_) 
开发者ID:tensorflow,项目名称:autograph,代码行数:5,代码来源:loop_basic_test.py

示例8: test_for_one_var_ds_iterator

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import Variable [as 别名]
def test_for_one_var_ds_iterator(self, l):
    inputs_ = lambda: (iter(_int_dataset(l)), tf.Variable(0))
    self.assertFunctionMatchesEagerStatefulInput(for_one_var, inputs_) 
开发者ID:tensorflow,项目名称:autograph,代码行数:5,代码来源:loop_basic_test.py

示例9: tf

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import Variable [as 别名]
def tf(self):
    """A Tensorflow expression which evaluates this NeuralQueryExpression.

    Returns:
      A Tensorflow expression that computes this NeuralQueryExpression's value.
    """
    if isinstance(self._tf, tf.Tensor) or isinstance(self._tf, tf.Variable):
      return self._tf  # pytype: disable=bad-return-type
    else:
      return tf.constant(self._tf) 
开发者ID:google-research,项目名称:language,代码行数:12,代码来源:__init__.py

示例10: test_group_rel_from_variable

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import Variable [as 别名]
def test_group_rel_from_variable(self):
    x = self.context.one(cell(2, 2), 'place_t')
    initializer = tf.keras.initializers.GlorotUniform()(
        [1, self.context.get_max_id('dir_g')])
    dir_tf_var = tf.Variable(initializer)
    dir_nql_exp = self.context.as_nql(dir_tf_var, 'dir_g')
    y = x.follow(dir_nql_exp)
    y.eval() 
开发者ID:google-research,项目名称:language,代码行数:10,代码来源:nql_test.py

示例11: __init__

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import Variable [as 别名]
def __init__(self):
    super(AddNet, self).__init__(
        tensor_spec.TensorSpec((), tf.float32), (), 'add_net')
    self.var = tf.Variable(0.0, dtype=tf.float32) 
开发者ID:tensorflow,项目名称:agents,代码行数:6,代码来源:policy_loader_test.py

示例12: __init__

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import Variable [as 别名]
def __init__(self,
               time_step_spec: ts.TimeStep,
               action_spec: types.NestedTensorSpec,
               debug_summaries: bool = False,
               summarize_grads_and_vars: bool = False,
               train_step_counter: Optional[tf.Variable] = None,
               num_outer_dims: int = 1,
               name: Optional[Text] = None):
    """Creates a random agent.

    Args:
      time_step_spec: A `TimeStep` spec of the expected time_steps.
      action_spec: A nest of BoundedTensorSpec representing the actions.
      debug_summaries: A bool to gather debug summaries.
      summarize_grads_and_vars: If true, gradient summaries will be written.
      train_step_counter: An optional counter to increment every time the train
        op is run.  Defaults to the global_step.
      num_outer_dims: same as base class.
      name: The name of this agent. All variables in this module will fall under
        that name. Defaults to the class name.
    """
    tf.Module.__init__(self, name=name)

    policy_class = random_tf_policy.RandomTFPolicy

    super(RandomAgent, self).__init__(
        time_step_spec,
        action_spec,
        policy_class=policy_class,
        debug_summaries=debug_summaries,
        summarize_grads_and_vars=summarize_grads_and_vars,
        train_step_counter=train_step_counter,
        num_outer_dims=num_outer_dims) 
开发者ID:tensorflow,项目名称:agents,代码行数:35,代码来源:random_agent.py

示例13: test_variables_receive_gradients

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import Variable [as 别名]
def test_variables_receive_gradients(self):
    loc = tf.Variable(1., dtype=tf.float32)
    log_scale = tf.Variable(0., dtype=tf.float32)
    with tf.GradientTape() as tape:
      dist = self.dist_cls(loc=loc, scale=tf.exp(log_scale))
      x = tf.random.normal([20])
      loss = -tf.reduce_mean(dist.log_prob(x))
    grads = tape.gradient(loss, [loc, log_scale])
    self.assertLen(grads, 2)
    self.assertNotIn(None, grads) 
开发者ID:tensorflow,项目名称:compression,代码行数:12,代码来源:uniform_noise_test.py

示例14: _make_variables

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import Variable [as 别名]
def _make_variables(self):
    """Creates the variables representing the parameters of the distribution."""
    channels = self.batch_shape.num_elements()
    filters = (1,) + self.num_filters + (1,)
    scale = self.init_scale ** (1 / (len(self.num_filters) + 1))
    self._matrices = []
    self._biases = []
    self._factors = []

    for i in range(len(self.num_filters) + 1):
      init = tf.math.log(tf.math.expm1(1 / scale / filters[i + 1]))
      init = tf.cast(init, dtype=self.dtype)
      init = tf.broadcast_to(init, (channels, filters[i + 1], filters[i]))
      matrix = tf.Variable(init, name="matrix_{}".format(i))
      self._matrices.append(matrix)

      bias = tf.Variable(
          tf.random.uniform(
              (channels, filters[i + 1], 1), -.5, .5, dtype=self.dtype),
          name="bias_{}".format(i))
      self._biases.append(bias)

      if i < len(self.num_filters):
        factor = tf.Variable(
            tf.zeros((channels, filters[i + 1], 1), dtype=self.dtype),
            name="factor_{}".format(i))
        self._factors.append(factor) 
开发者ID:tensorflow,项目名称:compression,代码行数:29,代码来源:deep_factorized.py

示例15: __init__

# 需要导入模块: from tensorflow.compat import v2 [as 别名]
# 或者: from tensorflow.compat.v2 import Variable [as 别名]
def __init__(self, returns_dict=False):
    embeddings = [
        ("", [0, 0, 0, 0]),  # OOV items are mapped to this embedding.
        ("hello world", [1, 2, 3, 4]),
        ("pair-programming", [5, 5, 5, 5]),
    ]
    keys = tf.constant([item[0] for item in embeddings], dtype=tf.string)
    indices = tf.constant(list(range(len(embeddings))), dtype=tf.int64)
    tbl_init = KeyValueTensorInitializer(keys, indices)
    self.table = HashTable(tbl_init, 0)
    self.weights = tf.Variable(
        list([item[1] for item in embeddings]), dtype=tf.float32)
    self.variables = [self.weights]
    self.trainable_variables = self.variables
    self._returns_dict = returns_dict 
开发者ID:tensorflow,项目名称:hub,代码行数:17,代码来源:feature_column_v2_test.py


注:本文中的tensorflow.compat.v2.Variable方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。